Logotipo do repositório
 

Publicação:
Underlying microevolutionary processes parallel macroevolutionary patterns in ancient neotropical mountains

dc.contributor.authorDantas-Queiroz, Marcos Vinicius [UNESP]
dc.contributor.authorCacossi, Tami da Costa
dc.contributor.authorLeal, Bárbara Simões Santos
dc.contributor.authorChaves, Cleber Juliano Neves
dc.contributor.authorVasconcelos, Thais N. C.
dc.contributor.authorVersieux, Leonardo de Melo
dc.contributor.authorPalma-Silva, Clarisse [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversity of Arkansas
dc.contributor.institutionUniversidade Federal do Rio Grande do Norte (UFRN)
dc.date.accessioned2022-04-28T19:44:01Z
dc.date.available2022-04-28T19:44:01Z
dc.date.issued2021-09-01
dc.description.abstractAim: Ancient climatic fluctuations are invoked as the main driving force that generates the astonishing biodiversity in ancient mountains. As a result, endemism and spatial turnover are usually high and few species are widespread amongst entire mountain ranges, precluding the understanding of origins of macroevolutionary patterns. Here, we used a species endemic to, but widespread in, one of the most species-rich ancient mountains in the globe to test how environmental changes acted on and how their macroevolutionary patterns were shaped. Location: Espinhaço Range, Eastern Brazil. Taxon: Vriesea oligantha species complex (Bromeliaceae). Methods: We compiled data for plastidial regions and nuclear microsatellites to assess genetic diversity, population structure, migration rates and phylogenetic relationships. Using temperature and precipitation variables, we modelled suitable areas for the present and the past, estimating corridors between isolated populations. We also implemented Bayesian demographic analyses to estimate ancient populations dynamics. Finally, we tested if population structure is driven by isolation by environment or by distance using a Bayesian modelling approach. Results: Our results showed that the intraspecific divergence events of V. oligantha are older than those associated with the latest Pleistocene climatic oscillations, supporting the view that Quaternary climatic fluctuations are key components for understanding its population differentiation processes. Species distribution modelling estimated corridors between populations in the past, as also shown in the demographic analyses, depicting a major spatial reorganization during colder climates. Besides, the high genetic structure estimated results from both models of isolation by distance and by environment. Main conclusions: V. oligantha is a remarkable model to test the effects of climatic oscillations over the biological community, since this species originated in the early-Pleistocene, prevailing over several cycles of climatic fluctuations until today. The estimated demographic dynamics of V. oligantha agrees with the species-pump mechanism, suggesting it as the main cause of speciation within the Espinhaço Range. Moreover, the phylogeographic patterns of V. oligantha reflect previously recognised spatial and temporal macroevolutionary patterns in the Espinhaço Range, providing insights into how microevolutionary processes may have given rise to this astonishing mountain biodiversity.en
dc.description.affiliationPrograma de Pós-graduação em Biologia Vegetal Universidade Estadual Paulista (UNESP)
dc.description.affiliationDepartamento de Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas (UNICAMP)
dc.description.affiliationDepartment of Biological Sciences University of Arkansas
dc.description.affiliationDepartamento de Botânica e Zoologia Centro de Biociências Universidade Federal do Rio Grande do Norte (UFRN)
dc.description.affiliationUnespPrograma de Pós-graduação em Biologia Vegetal Universidade Estadual Paulista (UNESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 303794/2019-4 LMV
dc.description.sponsorshipIdCNPq: 305398/2019-9 CPS
dc.description.sponsorshipIdCAPES: 88881.128215/2016-01 MVDQ
dc.description.sponsorshipIdCAPES: PDSE 88881.190071/2018-01 MVDQ
dc.description.sponsorshipIdCAPES: PROAP-2015/CAPES/PPGCB-BV
dc.description.sponsorshipIdCNPq: produtividade 300819/2016-1
dc.description.sponsorshipIdCNPq: produtividade 304778/2013-3
dc.format.extent2312-2327
dc.identifierhttp://dx.doi.org/10.1111/jbi.14154
dc.identifier.citationJournal of Biogeography, v. 48, n. 9, p. 2312-2327, 2021.
dc.identifier.doi10.1111/jbi.14154
dc.identifier.issn1365-2699
dc.identifier.issn0305-0270
dc.identifier.scopus2-s2.0-85113873581
dc.identifier.urihttp://hdl.handle.net/11449/222315
dc.language.isoeng
dc.relation.ispartofJournal of Biogeography
dc.sourceScopus
dc.subjectapproximate Bayesian computation
dc.subjectBromeliaceae
dc.subjectcampos rupestres
dc.subjectepiphytes
dc.subjectEspinhaço
dc.subjectinterglacial refugia
dc.subjectphylogeography
dc.subjectspecies-pump
dc.subjectVriesea
dc.titleUnderlying microevolutionary processes parallel macroevolutionary patterns in ancient neotropical mountainsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-5444-8121[1]
unesp.author.orcid0000-0001-6245-1382[2]
unesp.author.orcid0000-0003-4401-3252[3]
unesp.author.orcid0000-0002-5960-7304[4]
unesp.author.orcid0000-0001-9991-7924[5]
unesp.author.orcid0000-0003-1560-3691[6]
unesp.author.orcid0000-0003-0192-5489[7]

Arquivos

Coleções