Publicação: A geometric singular perturbation theory approach to constrained differential equations
dc.contributor.author | Toniol Cardin, Pedro [UNESP] | |
dc.contributor.author | Teixeira, Marco Antonio | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2019-10-06T15:23:59Z | |
dc.date.available | 2019-10-06T15:23:59Z | |
dc.date.issued | 2019-04-01 | |
dc.description.abstract | This paper is concerned with a geometric study of (𝑛n−1)-parameter families of constrained differential systems, where n≥ 2. Our main results say that the dynamics of such a family close to the impasse set is equivalent to the dynamics of a multiple time scale singular perturbation problem (that is a singularly perturbed system containing several small parameters). This enables us to use a geometric theory for multiscale systems in order to describe the behaviour of such a family close to the impasse set. We think that a systematic program towards a combination between geometric singular perturbation theory and constrained systems and problems involving persistence of typical minimal sets are currently emergent. Some illustrations and applications of the main results are provided. | en |
dc.description.affiliation | Universidade Estadual Paulista (UNESP) Faculdade de Engenharia | |
dc.description.affiliation | Universidade Estadual de Campinas (UNICAMP) Instituto de Matemática Estatística e Computação Científica | |
dc.description.affiliationUnesp | Universidade Estadual Paulista (UNESP) Faculdade de Engenharia | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 2012/18780-0 | |
dc.description.sponsorshipId | FAPESP: 2013/24541-0 | |
dc.description.sponsorshipId | CNPq: 300596/2009-0 | |
dc.description.sponsorshipId | CAPES: 88881.030454/2013-01 | |
dc.format.extent | 892-904 | |
dc.identifier | http://dx.doi.org/10.1002/mana.201700444 | |
dc.identifier.citation | Mathematische Nachrichten, v. 292, n. 4, p. 892-904, 2019. | |
dc.identifier.doi | 10.1002/mana.201700444 | |
dc.identifier.issn | 1522-2616 | |
dc.identifier.issn | 0025-584X | |
dc.identifier.scopus | 2-s2.0-85056399799 | |
dc.identifier.uri | http://hdl.handle.net/11449/187053 | |
dc.language.iso | eng | |
dc.relation.ispartof | Mathematische Nachrichten | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | constrained systems | |
dc.subject | multiple time scales | |
dc.subject | singular perturbation problems | |
dc.title | A geometric singular perturbation theory approach to constrained differential equations | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-8723-8200[1] |