Logotipo do repositório
 

Publicação:
Building detection from lidar data using entropy and the k-means concept

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Information obtained from LiDAR data processing is considered in a variety of applications, among them urban planning. In this context, buildings play a substantial role, since a high percentage of the urban landscape is occupied by them. In the literature, many methodologies have been developed aiming at the detection of building using remote sensing data. The approaches can be developed by applying different ideas: regularity of cluster boundary, plane fitting, radiometric data and also in geometric attribute derived from LiDAR. This paper proposes a method of building detection based on the use of the entropy concept and the K-means algorithm in which the training step is dispensed with. The experiments were performed considering two LiDAR datasets with different densities (12.5 pts/m2 and 4 pts/m2). Visual and qualitative analysis enabled verification of the potential of the proposed method, which presented satisfactory results for both datasets.

Descrição

Palavras-chave

Building Detection, Entropy, K-means Algorithm, LiDAR Data, Region Growing, Unsupervised

Idioma

Inglês

Como citar

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, v. 42, n. 2/W13, p. 969-974, 2019.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação