Logo do repositório

Ensemble Diversity Pruning on Cybersecurity: Optimizing Intrusion Detection Systems

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Several recent studies demonstrate that Intrusion Detection Systems (IDS) leveraging Ensemble learning techniques can effectively reduce the misclassification of malicious traffic on computer networks. However, identifying an optimal combination of classifiers often presents a significant challenge characterized by high computational cost. This work proposes an application of Diversity Pruning to address this challenge, aiming to surpass the performance of prior works. This work extend the experimental analysis by introducing four datasets for process evaluation. The results demonstrate a substantial reduction in computational cost alongside significant improvements in detection rates. The proposed approach reduced the classification errors by 18.82% for KDD-Cup'99 dataset, 26.58% for NSL-KDD dataset, 22.93% for UNSW-NB15 dataset, and 52.34% for ISCX-IDS-2012 dataset and the training time reduced by an factor of 98 for all datasets.

Descrição

Palavras-chave

Cybersecurity, Ensemble Learning, Intrusion Detection

Idioma

Inglês

Citação

International Conference on Systems, Signals, and Image Processing.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso