Publicação:
Icon and geometric data visualization with a self-organizing map grid

Nenhuma Miniatura disponível

Data

2014-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Data Visualization is an important tool for tasks related to Knowledge Discovery in Databases (KDD). Often the data to be visualized is complex, have multiple dimensions or features and consists of many individual data points, making visualization with traditional icon- and pixel-based and geometric techniques difficult. In this paper we propose a combination of icon-based and geometric-based visualization techniques backed up by a Self-Organizing Map, which allows dimensionality reduction and topology preservation. The technique is applied to some datasets of simple and intermediate complexity, and the results shows that it is possible to reduce clutter and facilitate identification of associations, clusters and outliers. © 2014 Springer International Publishing.

Descrição

Idioma

Inglês

Como citar

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8584 LNCS, n. PART 6, p. 562-575, 2014.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação