Logotipo do repositório
 

Publicação:
GIS-based analytical tools for transport planning: spatial regression models for transportation demand forecast

dc.contributor.authorLopes, Simone
dc.contributor.authorBrondino, Nair Cristina Margarido [UNESP]
dc.contributor.authorSilva, Antônio Nélson Rodrigues da
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2016-03-02T13:03:36Z
dc.date.available2016-03-02T13:03:36Z
dc.date.issued2014
dc.description.abstractConsidering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included). This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.en
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Faculdade de Ciências de Bauru, Bauru, Av. Eng. Luiz E. Carrijo Coube S/N, Vargem Limpa, CEP 17033-360, SP, Brasil
dc.description.affiliationDepartment of Transportation Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-carlense 400, 13566-590 São Carlos, Brazil
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Faculdade de Ciências de Bauru, Bauru, Av. Eng. Luiz E. Carrijo Coube S/N, Vargem Limpa, CEP 17033-360, SP, Brasil
dc.format.extent565-583
dc.identifierhttp://dx.doi.org/10.3390/ijgi3020565
dc.identifier.citationISPRS International Journal of Geo-Information, v. 3, n. 2, p. 565-583, 2014.
dc.identifier.doi10.3390/ijgi3020565
dc.identifier.issn2220-9964
dc.identifier.lattes5603234988255497
dc.identifier.orcid0000-0002-9111-6724
dc.identifier.urihttp://hdl.handle.net/11449/135629
dc.language.isoeng
dc.relation.ispartofISPRS International Journal of Geo-Information
dc.relation.ispartofjcr1.723
dc.relation.ispartofsjr0,493
dc.rights.accessRightsAcesso restrito
dc.sourceCurrículo Lattes
dc.subjectTransport planningen
dc.subjectTransport demanden
dc.subjectSpatial dependenceen
dc.subjectSpatial regressionen
dc.titleGIS-based analytical tools for transport planning: spatial regression models for transportation demand forecasten
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes5603234988255497
unesp.author.orcid0000-0002-9111-6724
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentMatemática - FCpt

Arquivos