Logotipo do repositório
 

Publicação:
Extraction of Building Roof Contours From LiDAR Data Using a Markov-Random-Field-Based Approach

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Institute of Electrical and Electronics Engineers (IEEE)

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

This paper proposes a method for the automatic extraction of building roof contours from a digital surface model (DSM) by regularizing light detection and ranging (LiDAR) data. The method uses two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region-merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. The optimal configuration of building roof contours is found by minimizing the energy function using a simulated annealing algorithm. Experiments carried out with the LiDAR-based DSM show that the proposed method works properly, as it provides roof contour information with approximately 90% shape accuracy and no verified false positives.

Descrição

Palavras-chave

Building roof contours, digital surface model (DSM), Markov random field (MRF), simulated annealing (SA)

Idioma

Inglês

Como citar

IEEE Transactions on Geoscience and Remote Sensing. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 50, n. 3, p. 981-987, 2012.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação