Logotipo do repositório
 

Publicação:
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]

dc.contributor.authorJodas, Danilo Samuel [UNESP]
dc.contributor.authorPassos, Leandro Aparecido
dc.contributor.authorAdeel, Ahsan
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Wolverhampton
dc.date.accessioned2023-07-29T16:02:22Z
dc.date.available2023-07-29T16:02:22Z
dc.date.issued2023-03-01
dc.description.abstractThis paper presents an open-source implementation of PL-kNN, a parameterless version of the k-Nearest Neighbors algorithm. The proposed model, developed in Python 3.6, was designed to avoid the choice of the k parameter required by the standard k-Nearest Neighbors technique. Essentially, the model computes the number of nearest neighbors of a target sample using the data distribution of the training set. The source code provides functions resembling the Scikit-learn methods for fitting the model and predicting the classes of the new samples. The source code is available in the GitHub repository with instructions for installation and examples for usage.en
dc.description.affiliationSão Paulo State University, SP
dc.description.affiliationSchool of Engineering and Informatics University of Wolverhampton
dc.description.affiliationUnespSão Paulo State University, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipPetrobras
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipEngineering and Physical Sciences Research Council
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2014/12236-1
dc.description.sponsorshipIdPetrobras: #2017/00285-6
dc.description.sponsorshipIdFAPESP: #2017/02286-0
dc.description.sponsorshipIdFAPESP: #2018/21934-5
dc.description.sponsorshipIdFAPESP: #2019/07665-4
dc.description.sponsorshipIdFAPESP: #2019/18287-0
dc.description.sponsorshipIdCNPq: #307066/2017-7
dc.description.sponsorshipIdCNPq: #427968/2018-6
dc.description.sponsorshipIdEngineering and Physical Sciences Research Council: EP/T021063/1
dc.identifierhttp://dx.doi.org/10.1016/j.simpa.2022.100459
dc.identifier.citationSoftware Impacts, v. 15.
dc.identifier.doi10.1016/j.simpa.2022.100459
dc.identifier.issn2665-9638
dc.identifier.scopus2-s2.0-85145703582
dc.identifier.urihttp://hdl.handle.net/11449/249534
dc.language.isoeng
dc.relation.ispartofSoftware Impacts
dc.sourceScopus
dc.subjectClassification
dc.subjectClustering
dc.subjectk-Nearest Neighbors
dc.subjectMachine learning
dc.subjectPython
dc.titlePL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]en
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-0370-1211[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos