Publicação: Detecção de malignidade em nódulos tumorais através de imagens médicas utilizando métodos computacionais
Carregando...
Data
2024-12-06
Autores
Orientador
Alves, Allan Felipe Fattori 

Coorientador
Pós-graduação
Curso de graduação
Botucatu - IBB - Física Médica
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Trabalho de conclusão de curso
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
Este trabalho propõe a aplicação de uso de métodos computacionais voltados para a utilização de aprendizado profundo (deep learning) com ênfase na técnica de redes neurais convolucionais (CNN) para o aprimoramento da classificação de nódulos pulmonares em imagens de tomografia computadorizada (CT) com base no banco de dados LIDC. Dentre as redes neurais pré treinadas, a arquitetura da ResNet 101 demonstrou os melhores resultados, com uma acurácia de 71%. Por outro lado, a DenseNet 121 teve o menor desempenho abaixo entre todas as redes estudadas, com uma acurácia de 59%. Apesar dos resultados obtidos pelo nosso algoritmo serem promissores, não são suficientes para a utilização clínica. Contudo ainda há margem para o seu aprimoramento, visando sua otimização no diagnóstico precoce da neoplasia pulmonar.
Resumo (inglês)
This work proposes applying computational methods focused on using deep learning, emphasizing convolutional neural network (CNN) techniques, to enhance the classification of pulmonary nodules in computed tomography (CT) images based on the LIDC database. Among the pre-trained neural networks, the ResNet 101 architecture demonstrated the best results, achieving an accuracy of 71%. On the other hand, DenseNet 121 showed the lowest performance among all the networks studied, with an accuracy of 59%. However, despite these promising results, more is needed for the clinical application of our algorithm. Nevertheless, there is still room for improvement, aiming at its optimization for the early diagnosis of pulmonary neoplasms.
Descrição
Palavras-chave
Idioma
Português
Como citar
ANDRADE, João Rafael Almeida de. Detecção de malignidade em nódulos tumorais através de imagens médicas utilizando métodos computacionais. Orientador: Allan Felipe Fattori Alves. 2024. Trabalho de Conclusão de Curso (Bacharelado em Física Médica) – Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, 2024.