Publicação: Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
dc.contributor.author | Ajuha, Sudha [UNESP] | |
dc.contributor.author | Akira Shinoda, Ailton [UNESP] | |
dc.contributor.author | Arruda Ramalho, Lucas [UNESP] | |
dc.contributor.author | Baulieu, Guillaume | |
dc.contributor.author | Boudoul, Gaelle | |
dc.contributor.author | Casarsa, Massimo | |
dc.contributor.author | Cascadan, Andre [UNESP] | |
dc.contributor.author | Clement, Emyr | |
dc.contributor.author | Costa de Paiva, Thiago [UNESP] | |
dc.contributor.author | Das, Souvik | |
dc.contributor.author | Dutta, Suchandra | |
dc.contributor.author | Eusebi, Ricardo | |
dc.contributor.author | Fedi, Giacomo | |
dc.contributor.author | Finotti Ferreira, Vitor [UNESP] | |
dc.contributor.author | Hahn, Kristian | |
dc.contributor.author | Hu, Zhen | |
dc.contributor.author | Jindariani, Sergo | |
dc.contributor.author | Konigsberg, Jacobo | |
dc.contributor.author | Liu, Tiehui | |
dc.contributor.author | Fu Low, Jia | |
dc.contributor.author | MacDonald, Emily | |
dc.contributor.author | Olsen, Jamieson | |
dc.contributor.author | Palla, Fabrizio | |
dc.contributor.author | Pozzobon, Nicola | |
dc.contributor.author | Rathjens, Denis | |
dc.contributor.author | Ristori, Luciano | |
dc.contributor.author | Rossin, Roberto | |
dc.contributor.author | Sung, Kevin | |
dc.contributor.author | Tran, Nhan | |
dc.contributor.author | Trovato, Marco | |
dc.contributor.author | Ulmer, Keith | |
dc.contributor.author | Vaz, Mario [UNESP] | |
dc.contributor.author | Viret, Sebastien | |
dc.contributor.author | Wu, Jin-Yuan | |
dc.contributor.author | Xu, Zijun | |
dc.contributor.author | Zorzetti, Silvia | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Institut de Physique Nucleaire de Lyon (IPNL) | |
dc.contributor.institution | INFN Sezione di Trieste | |
dc.contributor.institution | University of Bristol | |
dc.contributor.institution | University of Florida | |
dc.contributor.institution | HBNI | |
dc.contributor.institution | Texas A&M University | |
dc.contributor.institution | INFN Sezione di Pisa | |
dc.contributor.institution | Northwestern University | |
dc.contributor.institution | Fermi National Accelerator Laboratory | |
dc.contributor.institution | University of Colorado Boulder | |
dc.contributor.institution | Università di Padova | |
dc.contributor.institution | Peking University | |
dc.contributor.institution | CERN | |
dc.date.accessioned | 2023-07-29T12:41:48Z | |
dc.date.available | 2023-07-29T12:41:48Z | |
dc.date.issued | 2022-12-01 | |
dc.description.abstract | We present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector. | en |
dc.description.affiliation | UNESP Sao Paulo State University | |
dc.description.affiliation | Institut de Physique Nucleaire de Lyon (IPNL) | |
dc.description.affiliation | INFN Sezione di Trieste | |
dc.description.affiliation | University of Bristol | |
dc.description.affiliation | University of Florida | |
dc.description.affiliation | Saha Institute of Nuclear Physics HBNI | |
dc.description.affiliation | Texas A&M University | |
dc.description.affiliation | INFN Sezione di Pisa | |
dc.description.affiliation | Northwestern University | |
dc.description.affiliation | Fermi National Accelerator Laboratory | |
dc.description.affiliation | University of Colorado Boulder | |
dc.description.affiliation | INFN Sezione di Padova Università di Padova | |
dc.description.affiliation | Peking University | |
dc.description.affiliation | CERN, Esplanade des Particules 1, Geneva | |
dc.description.affiliationUnesp | UNESP Sao Paulo State University | |
dc.identifier | http://dx.doi.org/10.1088/1748-0221/17/12/P12002 | |
dc.identifier.citation | Journal of Instrumentation, v. 17, n. 12, 2022. | |
dc.identifier.doi | 10.1088/1748-0221/17/12/P12002 | |
dc.identifier.issn | 1748-0221 | |
dc.identifier.scopus | 2-s2.0-85143909380 | |
dc.identifier.uri | http://hdl.handle.net/11449/246469 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Instrumentation | |
dc.source | Scopus | |
dc.subject | Data acquisition concepts | |
dc.subject | Online farms and online filtering | |
dc.subject | Trigger algorithms | |
dc.subject | Trigger concepts and systems (hardware and software) | |
dc.title | Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques | en |
dc.type | Artigo | |
dspace.entity.type | Publication |