Logotipo do repositório
 

Publicação:
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques

dc.contributor.authorAjuha, Sudha [UNESP]
dc.contributor.authorAkira Shinoda, Ailton [UNESP]
dc.contributor.authorArruda Ramalho, Lucas [UNESP]
dc.contributor.authorBaulieu, Guillaume
dc.contributor.authorBoudoul, Gaelle
dc.contributor.authorCasarsa, Massimo
dc.contributor.authorCascadan, Andre [UNESP]
dc.contributor.authorClement, Emyr
dc.contributor.authorCosta de Paiva, Thiago [UNESP]
dc.contributor.authorDas, Souvik
dc.contributor.authorDutta, Suchandra
dc.contributor.authorEusebi, Ricardo
dc.contributor.authorFedi, Giacomo
dc.contributor.authorFinotti Ferreira, Vitor [UNESP]
dc.contributor.authorHahn, Kristian
dc.contributor.authorHu, Zhen
dc.contributor.authorJindariani, Sergo
dc.contributor.authorKonigsberg, Jacobo
dc.contributor.authorLiu, Tiehui
dc.contributor.authorFu Low, Jia
dc.contributor.authorMacDonald, Emily
dc.contributor.authorOlsen, Jamieson
dc.contributor.authorPalla, Fabrizio
dc.contributor.authorPozzobon, Nicola
dc.contributor.authorRathjens, Denis
dc.contributor.authorRistori, Luciano
dc.contributor.authorRossin, Roberto
dc.contributor.authorSung, Kevin
dc.contributor.authorTran, Nhan
dc.contributor.authorTrovato, Marco
dc.contributor.authorUlmer, Keith
dc.contributor.authorVaz, Mario [UNESP]
dc.contributor.authorViret, Sebastien
dc.contributor.authorWu, Jin-Yuan
dc.contributor.authorXu, Zijun
dc.contributor.authorZorzetti, Silvia
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionInstitut de Physique Nucleaire de Lyon (IPNL)
dc.contributor.institutionINFN Sezione di Trieste
dc.contributor.institutionUniversity of Bristol
dc.contributor.institutionUniversity of Florida
dc.contributor.institutionHBNI
dc.contributor.institutionTexas A&M University
dc.contributor.institutionINFN Sezione di Pisa
dc.contributor.institutionNorthwestern University
dc.contributor.institutionFermi National Accelerator Laboratory
dc.contributor.institutionUniversity of Colorado Boulder
dc.contributor.institutionUniversità di Padova
dc.contributor.institutionPeking University
dc.contributor.institutionCERN
dc.date.accessioned2023-07-29T12:41:48Z
dc.date.available2023-07-29T12:41:48Z
dc.date.issued2022-12-01
dc.description.abstractWe present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector.en
dc.description.affiliationUNESP Sao Paulo State University
dc.description.affiliationInstitut de Physique Nucleaire de Lyon (IPNL)
dc.description.affiliationINFN Sezione di Trieste
dc.description.affiliationUniversity of Bristol
dc.description.affiliationUniversity of Florida
dc.description.affiliationSaha Institute of Nuclear Physics HBNI
dc.description.affiliationTexas A&M University
dc.description.affiliationINFN Sezione di Pisa
dc.description.affiliationNorthwestern University
dc.description.affiliationFermi National Accelerator Laboratory
dc.description.affiliationUniversity of Colorado Boulder
dc.description.affiliationINFN Sezione di Padova Università di Padova
dc.description.affiliationPeking University
dc.description.affiliationCERN, Esplanade des Particules 1, Geneva
dc.description.affiliationUnespUNESP Sao Paulo State University
dc.identifierhttp://dx.doi.org/10.1088/1748-0221/17/12/P12002
dc.identifier.citationJournal of Instrumentation, v. 17, n. 12, 2022.
dc.identifier.doi10.1088/1748-0221/17/12/P12002
dc.identifier.issn1748-0221
dc.identifier.scopus2-s2.0-85143909380
dc.identifier.urihttp://hdl.handle.net/11449/246469
dc.language.isoeng
dc.relation.ispartofJournal of Instrumentation
dc.sourceScopus
dc.subjectData acquisition concepts
dc.subjectOnline farms and online filtering
dc.subjectTrigger algorithms
dc.subjectTrigger concepts and systems (hardware and software)
dc.titleCharged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniquesen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções