Logotipo do repositório
 

Publicação:
A snoring classifier based on heart rate variability analysis

dc.contributor.authorIeong, Chio-In
dc.contributor.authorDong, Cheng
dc.contributor.authorNan, Wenya
dc.contributor.authorRosa, Agostinho
dc.contributor.authorGuimarães, Ronaldo [UNESP]
dc.contributor.authorVai, Mang-I.
dc.contributor.authorMak, Pui-In
dc.contributor.authorWan, Feng
dc.contributor.authorMak, Peng-Un
dc.contributor.institutionUniversity of Macau
dc.contributor.institutionTechnical University of Lisbon
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:26:16Z
dc.date.available2014-05-27T11:26:16Z
dc.date.issued2011-12-01
dc.description.abstractThe effect of snoring on the cardiovascular system is not well-known. In this study we analyzed the Heart Rate Variability (HRV) differences between light and heavy snorers. The experiments are done on the full-whole-night polysomnography (PSG) with ECG and audio channels from patient group (heavy snorer) and control group (light snorer), which are gender- and age-paired, totally 30 subjects. A feature Snoring Density (SND) of audio signal as classification criterion and HRV features are computed. Mann-Whitney statistical test and Support Vector Machine (SVM) classification are done to see the correlation. The result of this study shows that snoring has close impact on the HRV features. This result can provide a deeper insight into the physiological understand of snoring. © 2011 CCAL.en
dc.description.affiliationDepartment of Electrical and Computer Engineering University of Macau
dc.description.affiliationEvolutionary Systems and Biomedical Engineering Lab. Technical University of Lisbon
dc.description.affiliationDepartment of Neurology UNESP, Botucatu
dc.description.affiliationUnespDepartment of Neurology UNESP, Botucatu
dc.format.extent345-348
dc.identifierhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6164573
dc.identifier.citationComputing in Cardiology, v. 38, p. 345-348.
dc.identifier.issn2325-8861
dc.identifier.issn2325-887X
dc.identifier.scopus2-s2.0-84859963132
dc.identifier.urihttp://hdl.handle.net/11449/72936
dc.language.isoeng
dc.relation.ispartofComputing in Cardiology
dc.relation.ispartofsjr0,191
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAudio channels
dc.subjectAudio signal
dc.subjectClassification criterion
dc.subjectControl groups
dc.subjectHeart rate variability
dc.subjectMann-Whitney
dc.subjectPolysomnography
dc.subjectSupport vector machine (SVM)
dc.subjectCardiology
dc.subjectHeart
dc.subjectStatistical tests
dc.subjectSupport vector machines
dc.titleA snoring classifier based on heart rate variability analysisen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatupt
unesp.departmentNeurologia, Psicologia e Psiquiatria - FMBpt

Arquivos