Atenção!


Informamos que o Repositório Institucional passará por atualização no dia 15/01/2026 e ficará fora do ar entre 10:00 e 14:00 horas.

Pedimos a sua compreensão

Logo do repositório

MI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment[Formula presented]

dc.contributor.authorBankole, Abayomi O. [UNESP]
dc.contributor.authorMoruzzi, Rodrigo [UNESP]
dc.contributor.authorNegri, Rogério G. [UNESP]
dc.contributor.authorOishi, Cassio M.
dc.contributor.authorBankole, Afolashade R. [UNESP]
dc.contributor.authorJames, Abraham O. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal University of Agriculture
dc.contributor.institutionSão José dos Campos
dc.date.accessioned2025-04-29T18:07:12Z
dc.date.issued2024-05-01
dc.description.abstractThis paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA data and designed an effective algorithm with the capability to predict varying floc lengths and the underlying kinetics under a broad flocculation conditions (Gf and Tf). Technically, the designed machine-intelligence framework (MI-NiDIA) involves data preprocessing, automatic parameter selection, validation and prediction of floc length evolution with metrics. For instance, MI-NiDIA-MLP recorded R2 of 0.95–1.0 for varying floc length at Gf60s−1.en
dc.description.affiliationCivil and Environmental Engineering Graduate Program (UNESP) Bauru
dc.description.affiliationInstitute of Science and Technology São Paulo State University (UNESP) São José dos Campos
dc.description.affiliationDepartment of Water Resources Management and Agrometeorology Federal University of Agriculture
dc.description.affiliationGraduate Program in Natural Disasters (UNESP/CEMADEN) São José dos Campos
dc.description.affiliationFaculty of Science and Technology Department of Mathematics and Computer Science São José dos Campos
dc.description.affiliationUnespCivil and Environmental Engineering Graduate Program (UNESP) Bauru
dc.description.affiliationUnespInstitute of Science and Technology São Paulo State University (UNESP) São José dos Campos
dc.description.affiliationUnespGraduate Program in Natural Disasters (UNESP/CEMADEN) São José dos Campos
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2023/08052-1
dc.description.sponsorshipIdCNPq: 305220/2022-5
dc.description.sponsorshipIdCNPq: 309788/2021-8
dc.description.sponsorshipIdCNPq: 441591/2023-0
dc.identifierhttp://dx.doi.org/10.1016/j.simpa.2024.100662
dc.identifier.citationSoftware Impacts, v. 20.
dc.identifier.doi10.1016/j.simpa.2024.100662
dc.identifier.issn2665-9638
dc.identifier.scopus2-s2.0-85193975332
dc.identifier.urihttps://hdl.handle.net/11449/297618
dc.language.isoeng
dc.relation.ispartofSoftware Impacts
dc.sourceScopus
dc.subjectFlocculation kinetics
dc.subjectMachine learning
dc.subjectNon-intrusive image analysis
dc.subjectSmart water treatment
dc.titleMI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment[Formula presented]en
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-5991-0506 0000-0002-5991-0506 0000-0002-5991-0506[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campospt

Arquivos