MI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment[Formula presented]
| dc.contributor.author | Bankole, Abayomi O. [UNESP] | |
| dc.contributor.author | Moruzzi, Rodrigo [UNESP] | |
| dc.contributor.author | Negri, Rogério G. [UNESP] | |
| dc.contributor.author | Oishi, Cassio M. | |
| dc.contributor.author | Bankole, Afolashade R. [UNESP] | |
| dc.contributor.author | James, Abraham O. [UNESP] | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Federal University of Agriculture | |
| dc.contributor.institution | São José dos Campos | |
| dc.date.accessioned | 2025-04-29T18:07:12Z | |
| dc.date.issued | 2024-05-01 | |
| dc.description.abstract | This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA data and designed an effective algorithm with the capability to predict varying floc lengths and the underlying kinetics under a broad flocculation conditions (Gf and Tf). Technically, the designed machine-intelligence framework (MI-NiDIA) involves data preprocessing, automatic parameter selection, validation and prediction of floc length evolution with metrics. For instance, MI-NiDIA-MLP recorded R2 of 0.95–1.0 for varying floc length at Gf60s−1. | en |
| dc.description.affiliation | Civil and Environmental Engineering Graduate Program (UNESP) Bauru | |
| dc.description.affiliation | Institute of Science and Technology São Paulo State University (UNESP) São José dos Campos | |
| dc.description.affiliation | Department of Water Resources Management and Agrometeorology Federal University of Agriculture | |
| dc.description.affiliation | Graduate Program in Natural Disasters (UNESP/CEMADEN) São José dos Campos | |
| dc.description.affiliation | Faculty of Science and Technology Department of Mathematics and Computer Science São José dos Campos | |
| dc.description.affiliationUnesp | Civil and Environmental Engineering Graduate Program (UNESP) Bauru | |
| dc.description.affiliationUnesp | Institute of Science and Technology São Paulo State University (UNESP) São José dos Campos | |
| dc.description.affiliationUnesp | Graduate Program in Natural Disasters (UNESP/CEMADEN) São José dos Campos | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | FAPESP: 2023/08052-1 | |
| dc.description.sponsorshipId | CNPq: 305220/2022-5 | |
| dc.description.sponsorshipId | CNPq: 309788/2021-8 | |
| dc.description.sponsorshipId | CNPq: 441591/2023-0 | |
| dc.identifier | http://dx.doi.org/10.1016/j.simpa.2024.100662 | |
| dc.identifier.citation | Software Impacts, v. 20. | |
| dc.identifier.doi | 10.1016/j.simpa.2024.100662 | |
| dc.identifier.issn | 2665-9638 | |
| dc.identifier.scopus | 2-s2.0-85193975332 | |
| dc.identifier.uri | https://hdl.handle.net/11449/297618 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Software Impacts | |
| dc.source | Scopus | |
| dc.subject | Flocculation kinetics | |
| dc.subject | Machine learning | |
| dc.subject | Non-intrusive image analysis | |
| dc.subject | Smart water treatment | |
| dc.title | MI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment[Formula presented] | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-5991-0506 0000-0002-5991-0506 0000-0002-5991-0506[1] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos | pt |
