Soil fertility matters! A new conceptual model for carbon stewardship in neotropical croplands taking climate-smart agricultural practices into account
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Mismanagement of agroecosystems in Neotropical regions threatens global security, accelerating the transgression of planetary boundaries. Therefore, understanding carbon (C) stewardship and how climate-smart agriculture (CSA) practices change nutrient availability plays a central role. Here, we analyzed nutrient availability, nitrogen (N) inputs, climate, and soil texture influence C flow into particulate (POC) and mineral-associated organic carbon (MAOC) pools to support sustainable C management in neotropical agroecosystems. To test our hypothesis data were collected from three field experimental agroecosystem sites and a literature overview. Our machine learning models estimated that nutrient availability, notably zinc (Zn), and soil texture, regulate C flow into POC and MAOC pools in agroecosystems. The climate variables exhibited minimal effects. There was no MAOC C saturation in neotropical agroecosystems, with an upper boundary of 36 g C kg-1. This demonstrates the potential of nature-based solutions for C storage in tropical soils. Synthetic N fertilization was not a key driver of C flow into POC and MAOC pools in these agroecosystems; however, organic N inputs, such as those from legumes, showed significant potential in increasing soil C and reducing carbon-to‑nitrogen ratio. Our main finding reveals soil fertility as a key regulator of C flow into POC and MAOC pools in Neotropical agroecosystems. Additionally, nature-based solutions from CSA are viable for atmospheric carbon removal strategies in Neotropical areas. Thus, by integrating experimental and simulated insights, we propose a new conceptual model linking nutrient availability to C stewardship in neotropical agroecosystems, outlining existing knowledge gaps and suggesting directions for future research toward climate-smart agriculture.
Descrição
Palavras-chave
Carbon saturation, Intercropped agroecosystems, Machine learning models, Nitrogen, No-tillage farming, Tropical croplands, Agro-ecosystems, Intercropped agroecosystem, No tillage, Nutrient availability, Organic carbon pools, Smart agricultures, Tropical cropland
Idioma
Inglês
Citação
Science of the Total Environment, v. 978.




