Logo do repositório

Soil fertility matters! A new conceptual model for carbon stewardship in neotropical croplands taking climate-smart agricultural practices into account

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Mismanagement of agroecosystems in Neotropical regions threatens global security, accelerating the transgression of planetary boundaries. Therefore, understanding carbon (C) stewardship and how climate-smart agriculture (CSA) practices change nutrient availability plays a central role. Here, we analyzed nutrient availability, nitrogen (N) inputs, climate, and soil texture influence C flow into particulate (POC) and mineral-associated organic carbon (MAOC) pools to support sustainable C management in neotropical agroecosystems. To test our hypothesis data were collected from three field experimental agroecosystem sites and a literature overview. Our machine learning models estimated that nutrient availability, notably zinc (Zn), and soil texture, regulate C flow into POC and MAOC pools in agroecosystems. The climate variables exhibited minimal effects. There was no MAOC C saturation in neotropical agroecosystems, with an upper boundary of 36 g C kg-1. This demonstrates the potential of nature-based solutions for C storage in tropical soils. Synthetic N fertilization was not a key driver of C flow into POC and MAOC pools in these agroecosystems; however, organic N inputs, such as those from legumes, showed significant potential in increasing soil C and reducing carbon-to‑nitrogen ratio. Our main finding reveals soil fertility as a key regulator of C flow into POC and MAOC pools in Neotropical agroecosystems. Additionally, nature-based solutions from CSA are viable for atmospheric carbon removal strategies in Neotropical areas. Thus, by integrating experimental and simulated insights, we propose a new conceptual model linking nutrient availability to C stewardship in neotropical agroecosystems, outlining existing knowledge gaps and suggesting directions for future research toward climate-smart agriculture.

Descrição

Palavras-chave

Carbon saturation, Intercropped agroecosystems, Machine learning models, Nitrogen, No-tillage farming, Tropical croplands, Agro-ecosystems, Intercropped agroecosystem, No tillage, Nutrient availability, Organic carbon pools, Smart agricultures, Tropical cropland

Idioma

Inglês

Citação

Science of the Total Environment, v. 978.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso