The Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approaches
| dc.contributor.author | Moura, João Paulo | |
| dc.contributor.author | Pacheco, Fernando António Leal | |
| dc.contributor.author | Valle Junior, Renato Farias do | |
| dc.contributor.author | de Melo Silva, Maytê Maria Abreu Pires | |
| dc.contributor.author | Pissarra, Teresa Cristina Tarlé [UNESP] | |
| dc.contributor.author | Melo, Marília Carvalho de | |
| dc.contributor.author | Valera, Carlos Alberto | |
| dc.contributor.author | Sanches Fernandes, Luís Filipe | |
| dc.contributor.author | Rolim, Glauco de Souza [UNESP] | |
| dc.contributor.institution | Universidade de Trás-os-Montes e Alto Douro | |
| dc.contributor.institution | Laboratório de Geoprossessamento | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Cidade Administrativa do Estado de Minas Gerais | |
| dc.contributor.institution | Regional Coordination of Environmental Justice Promoters of the Paranaíba and Baixo Rio Grande River Basins | |
| dc.date.accessioned | 2025-04-29T18:49:15Z | |
| dc.date.issued | 2024-02-01 | |
| dc.description.abstract | The modeling of metal concentrations in large rivers is complex because the contributing factors are numerous, namely, the variation in metal sources across spatiotemporal domains. By considering both domains, this study modeled metal concentrations derived from the interaction of river water and sediments of contrasting grain size and chemical composition, in regions of contrasting seasonal precipitation. Statistical methods assessed the processes of metal partitioning and transport, while artificial intelligence methods structured the dataset to predict the evolution of metal concentrations as a function of environmental changes. The methodology was applied to the Paraopeba River (Brazil), divided into sectors of coarse aluminum-rich natural sediments and sectors enriched in fine iron- and manganese-rich mine tailings, after the collapse of the B1 dam in Brumadinho, with 85–90% rainfall occurring from October to March. The prediction capacity of the random forest regressor was large for aluminum, iron and manganese concentrations, with average precision > 90% and accuracy < 0.2. | en |
| dc.description.affiliation | CITAB—Centro de Investigação e Tecnologias Agroambientais e Biológicas Universidade de Trás-os-Montes e Alto Douro, Ap. 1013 | |
| dc.description.affiliation | CQVR—Centro de Química de Vila Real Universidade de Trás-os-Montes e Alto Douro, Ap. 1013 | |
| dc.description.affiliation | Instituto Federal do Triângulo Mineiro Laboratório de Geoprossessamento, Campus Uberaba, MG | |
| dc.description.affiliation | Faculdade de Ciências Agrárias e Veterinárias Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, SP | |
| dc.description.affiliation | Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável Cidade Administrativa do Estado de Minas Gerais, Rodovia João Paulo II, 4143, Bairro Serra Verde, MG | |
| dc.description.affiliation | Regional Coordination of Environmental Justice Promoters of the Paranaíba and Baixo Rio Grande River Basins, Rua Coronel Antônio Rios, 951, MG | |
| dc.description.affiliationUnesp | Faculdade de Ciências Agrárias e Veterinárias Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, SP | |
| dc.identifier | http://dx.doi.org/10.3390/w16030379 | |
| dc.identifier.citation | Water (Switzerland), v. 16, n. 3, 2024. | |
| dc.identifier.doi | 10.3390/w16030379 | |
| dc.identifier.issn | 2073-4441 | |
| dc.identifier.scopus | 2-s2.0-85184737791 | |
| dc.identifier.uri | https://hdl.handle.net/11449/300326 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Water (Switzerland) | |
| dc.source | Scopus | |
| dc.subject | machine learning prediction | |
| dc.subject | metals | |
| dc.subject | river | |
| dc.subject | sediment source | |
| dc.subject | spatiotemporal domain | |
| dc.title | The Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approaches | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | 3d807254-e442-45e5-a80b-0f6bf3a26e48 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 3d807254-e442-45e5-a80b-0f6bf3a26e48 | |
| unesp.author.orcid | 0000-0002-4543-0237[1] | |
| unesp.author.orcid | 0000-0002-2399-5261[2] | |
| unesp.author.orcid | 0000-0003-0774-5788[3] | |
| unesp.author.orcid | 0000-0001-8261-2470[5] | |
| unesp.author.orcid | 0000-0001-5096-0550[7] | |
| unesp.author.orcid | 0000-0002-9486-7160[8] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal | pt |

