Logo do repositório

The Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approaches

dc.contributor.authorMoura, João Paulo
dc.contributor.authorPacheco, Fernando António Leal
dc.contributor.authorValle Junior, Renato Farias do
dc.contributor.authorde Melo Silva, Maytê Maria Abreu Pires
dc.contributor.authorPissarra, Teresa Cristina Tarlé [UNESP]
dc.contributor.authorMelo, Marília Carvalho de
dc.contributor.authorValera, Carlos Alberto
dc.contributor.authorSanches Fernandes, Luís Filipe
dc.contributor.authorRolim, Glauco de Souza [UNESP]
dc.contributor.institutionUniversidade de Trás-os-Montes e Alto Douro
dc.contributor.institutionLaboratório de Geoprossessamento
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionCidade Administrativa do Estado de Minas Gerais
dc.contributor.institutionRegional Coordination of Environmental Justice Promoters of the Paranaíba and Baixo Rio Grande River Basins
dc.date.accessioned2025-04-29T18:49:15Z
dc.date.issued2024-02-01
dc.description.abstractThe modeling of metal concentrations in large rivers is complex because the contributing factors are numerous, namely, the variation in metal sources across spatiotemporal domains. By considering both domains, this study modeled metal concentrations derived from the interaction of river water and sediments of contrasting grain size and chemical composition, in regions of contrasting seasonal precipitation. Statistical methods assessed the processes of metal partitioning and transport, while artificial intelligence methods structured the dataset to predict the evolution of metal concentrations as a function of environmental changes. The methodology was applied to the Paraopeba River (Brazil), divided into sectors of coarse aluminum-rich natural sediments and sectors enriched in fine iron- and manganese-rich mine tailings, after the collapse of the B1 dam in Brumadinho, with 85–90% rainfall occurring from October to March. The prediction capacity of the random forest regressor was large for aluminum, iron and manganese concentrations, with average precision > 90% and accuracy < 0.2.en
dc.description.affiliationCITAB—Centro de Investigação e Tecnologias Agroambientais e Biológicas Universidade de Trás-os-Montes e Alto Douro, Ap. 1013
dc.description.affiliationCQVR—Centro de Química de Vila Real Universidade de Trás-os-Montes e Alto Douro, Ap. 1013
dc.description.affiliationInstituto Federal do Triângulo Mineiro Laboratório de Geoprossessamento, Campus Uberaba, MG
dc.description.affiliationFaculdade de Ciências Agrárias e Veterinárias Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, SP
dc.description.affiliationSecretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável Cidade Administrativa do Estado de Minas Gerais, Rodovia João Paulo II, 4143, Bairro Serra Verde, MG
dc.description.affiliationRegional Coordination of Environmental Justice Promoters of the Paranaíba and Baixo Rio Grande River Basins, Rua Coronel Antônio Rios, 951, MG
dc.description.affiliationUnespFaculdade de Ciências Agrárias e Veterinárias Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, SP
dc.identifierhttp://dx.doi.org/10.3390/w16030379
dc.identifier.citationWater (Switzerland), v. 16, n. 3, 2024.
dc.identifier.doi10.3390/w16030379
dc.identifier.issn2073-4441
dc.identifier.scopus2-s2.0-85184737791
dc.identifier.urihttps://hdl.handle.net/11449/300326
dc.language.isoeng
dc.relation.ispartofWater (Switzerland)
dc.sourceScopus
dc.subjectmachine learning prediction
dc.subjectmetals
dc.subjectriver
dc.subjectsediment source
dc.subjectspatiotemporal domain
dc.titleThe Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approachesen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication3d807254-e442-45e5-a80b-0f6bf3a26e48
relation.isOrgUnitOfPublication.latestForDiscovery3d807254-e442-45e5-a80b-0f6bf3a26e48
unesp.author.orcid0000-0002-4543-0237[1]
unesp.author.orcid0000-0002-2399-5261[2]
unesp.author.orcid0000-0003-0774-5788[3]
unesp.author.orcid0000-0001-8261-2470[5]
unesp.author.orcid0000-0001-5096-0550[7]
unesp.author.orcid0000-0002-9486-7160[8]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt

Arquivos