Logotipo do repositório
 

Publicação:
PlaceProfile: Employing Visual and Cluster Analysis to Profile Regions based on Points of Interest

dc.contributor.authorChristofano, Rafael Mariano [UNESP]
dc.contributor.authorMarcilio Junior, Wilson Estecio [UNESP]
dc.contributor.authorEler, Danilo Medeiros [UNESP]
dc.contributor.authorFilipe, J.
dc.contributor.authorSmialek, M.
dc.contributor.authorBrodsky, A.
dc.contributor.authorHammoudi, S.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-11-30T13:42:37Z
dc.date.available2022-11-30T13:42:37Z
dc.date.issued2021-01-01
dc.description.abstractUnderstanding how commercial and social activities and points of interest are located in a city is essential to plan efficient cities in smart mobility. Over the years, the growth of data sources from distinct online social networks has enabled new perspectives to applications that provide mechanisms to aid in comprehension of how people displaces between different regions within a city. To support enterprises and governments better understand and compare distinct regions of a city, this work proposes a web application called PlaceProfile to perform visual profiling of city areas based on iconographic visualization and to label areas based on clustering algorithms. The visualization results are overlayered on Google Maps to enrich the map layout and aid analyst in understanding region profiling at a glance. Besides, PlaceProfile coordinates a radar chart with areas selected by the user to enable detailed inspection of the frequency of categories of points of interest (POIs). This linked views approach also supports clustering algorithms' explainability by providing inspections of the attributes used to compute similarities. We employed the proposed approach in a case study in the Sao Paulo city, Brazil.en
dc.description.affiliationSao Paulo State Univ UNESP, Presidente Prudente, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Presidente Prudente, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2018/17881-3
dc.description.sponsorshipIdFAPESP: 2018/25755-8
dc.format.extent506-514
dc.identifierhttp://dx.doi.org/10.5220/0010453405060514
dc.identifier.citationProceedings Of The 23rd International Conference On Enterprise Information Systems (iceis 2021), Vol 1. Setubal: Scitepress, p. 506-514, 2021.
dc.identifier.doi10.5220/0010453405060514
dc.identifier.issn2184-4992
dc.identifier.urihttp://hdl.handle.net/11449/237711
dc.identifier.wosWOS:000783390600054
dc.language.isoeng
dc.publisherScitepress
dc.relation.ispartofProceedings Of The 23rd International Conference On Enterprise Information Systems (iceis 2021), Vol 1
dc.sourceWeb of Science
dc.subjectArea Profiling
dc.subjectSmart Cities
dc.subjectSmart Mobility
dc.subjectPOIs
dc.subjectClustering
dc.subjectVisualization
dc.subjectGoogle Maps
dc.titlePlaceProfile: Employing Visual and Cluster Analysis to Profile Regions based on Points of Interesten
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderScitepress
dspace.entity.typePublication
unesp.departmentEstatística - FCTpt

Arquivos