Publicação: Restauração de imagens utilizando projeções em conjuntos convexos e algoritmos evolucionistas
Carregando...
Arquivos
Data
2014-02-24
Autores
Orientador
Papa, João Paulo 

Coorientador
Pós-graduação
Ciência da Computação - FC/FCT/IBILCE/IGCE 33004153073P2
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (inglês)
The process of image restoration aims to enhance images corrupted by noise and blurred. Iterative techniques can better control the restoration algorithm in order to restore blurred regions in details without increasing noise. Techniques based on Projection Sets in Convex (Projections onto Convex Sets - POCS) have been used in the context of image restoration by projecting the solution in a hyperspace until some convergence criterion is met. The expected result is a better picture at the end of an unknown number of projections. The number of convex sets and its combinations allow you to build several image restoration algorithms based on POCS. This study uses two convex sets: Row Action Projections (RAP) and Limited Amplitude (LA). The RAP algorithm has a relaxation parameter 𝜆 depends on the characteristics of the image that will be restored. Thus, erroneous values of 𝜆 can lead to a poor restoration. We propose to find the value of 𝜆 as the problem of modeling and optimization using different evolutionary techniques. Furthermore, is possible to use the parameters learned in restoring an image, and use them to another image
Resumo (português)
O processo de restauração de imagens tem como objetivo melhorar as imagens corrompidas por ruídos e borramentos. Técnicas iterativas podem controlar melhor o algoritmo de restauração a fim de restaurar detalhes em regiões borradas sem aumentar o ruído. Técnicas baseadas em Projeção em Conjuntos Convexos (Projections onto Convex Sets - POCS) tem sido utilizadas no contexto de restauração de imagens, projetando a solução em um hiperespaço até que algum critério de convergência seja encontrado. O resultado esperado é uma imagem melhor ao final de um número desconhecido de projeções. O número de conjuntos convexos e suas combinações permitem construir vários algoritmos de restauração de imagens baseados em POCS. O presente trabalho utiliza dois conjuntos convexos: Row-Action Projections (RAP) e Limited Amplitude (LA). O algoritmo RAP possui um parâmetro de relaxação 𝜆 que depende das características da imagem que será restaurada. Assim, valores errados de 𝜆 podem conduzir a uma pobre restauração. Propomos achar o valor de 𝜆 modelando o problema como de otimização e utilizando diferentes técnicas evolucionistas. Além disso, é possível utilizar os parâmetros de restauração aprendidas sobre uma imagem e empregá-los para uma outra imagem
Descrição
Idioma
Português
Como citar
PIRES, Rafael Gonçalves. Restauração de imagens utilizando projeções em conjuntos convexos e algoritmos evolucionistas. 2014. 59 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2014.