Logotipo do repositório
 

Publicação:
Improved electrical transport in lightly Er-doped sol-gel spin-coating SnO2 thin films, processed by photolithography

dc.contributor.authorRavaro, Leandro Piaggi
dc.contributor.authorScalvi, Luis Vicente de Andrade [UNESP]
dc.contributor.authorBoratto, Miguel Henrique [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPOSMAT Postgrad Program Mat Sci &Technol FC
dc.date.accessioned2015-10-21T21:04:57Z
dc.date.available2015-10-21T21:04:57Z
dc.date.issued2015-03-01
dc.description.abstractSol-gel spin-coating SnO2 thin films were deposited and processed through positive photolithography (liftoff), avoiding surface interaction with gaseous oxygen species and leading to samples with higher stability and data reproducibility, when submitted to electrical characterization. Processing includes: (1) a narrow conduction channel, (2) the assembly of electric contacts by ultrasound soldering, (3) deposition of an insulating layer, preventing the surface contact with atmospheric oxygen, which contributes for reliable measurements and the possibility of measuring SnO2 matrix properties without influence of adsorbed oxygen. Lightly Er-doped SnO2 sample (0.05 at.%), processed by this manner, has allowed the observation of a maximum about 50 K, in the temperature-dependent resistivity curve, which has not been found previously. This result is probably related to the combination of free electron concentration, which grows with temperature, and the grain boundary scattering, which decreases with temperature, and is the dominant mechanism for sol-gel SnO2. The processing also assures a remarkable reproducibility in the decay of photo-induced conductivity, yielding reliability to apply a modeling for the determination of important decay parameters, such as capture energy and grain boundary potential barrier.en
dc.description.affiliationUniversidade de São Paulo, Instituto de Física de São Carlos
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Física, Faculdade de Ciências de Bauru
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent1419-1427
dc.identifierhttp://link.springer.com/article/10.1007%2Fs00339-014-8900-7
dc.identifier.citationApplied Physics A-materials Science &processing. New York: Springer, v. 118, n. 4, p. 1419-1427, 2015.
dc.identifier.doi10.1007/s00339-014-8900-7
dc.identifier.issn0947-8396
dc.identifier.lattes7730719476451232
dc.identifier.orcid0000-0001-5762-6424
dc.identifier.urihttp://hdl.handle.net/11449/129430
dc.identifier.wosWOS:000349598000031
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofApplied Physics A-materials Science &processing
dc.relation.ispartofjcr1.604
dc.relation.ispartofsjr0,481
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.titleImproved electrical transport in lightly Er-doped sol-gel spin-coating SnO2 thin films, processed by photolithographyen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.advisor.orcid0000-0001-5762-6424[2]
unesp.author.lattes7730719476451232[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentFísica - FCpt

Arquivos