Logotipo do repositório
 

Publicação:
Integrating Unsupervised Machine Intelligence and Anomaly Detection for Spatio-Temporal Dynamic Mapping Using Remote Sensing Image Series

dc.contributor.authorGino, Vinicius L. S. [UNESP]
dc.contributor.authorNegri, Rogerio G. [UNESP]
dc.contributor.authorSouza, Felipe N. [UNESP]
dc.contributor.authorSilva, Erivaldo A. [UNESP]
dc.contributor.authorBressane, Adriano [UNESP]
dc.contributor.authorMendes, Tatiana S. G. [UNESP]
dc.contributor.authorCasaca, Wallace [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T11:59:52Z
dc.date.available2023-07-29T11:59:52Z
dc.date.issued2023-03-01
dc.description.abstractThe synergistic use of remote sensing and unsupervised machine learning has emerged as a potential tool for addressing a variety of environmental monitoring applications, such as detecting disaster-affected areas and deforestation. This paper proposes a new machine-intelligent approach to detecting and characterizing spatio-temporal changes on the Earth's surface by using remote sensing data and unsupervised learning. Our framework was designed to be fully automatic by integrating unsupervised anomaly detection models, remote sensing image series, and open data extracted from the Google Earth Engine platform. The methodology was evaluated by taking both simulated and real-world environmental data acquired from several imaging sensors, including Landsat-8 OLI, Sentinel-2 MSI, and Terra MODIS. The experimental results were measured with the kappa and F1-score metrics, and they indicated an assertiveness level of 0.85 for the change detection task, demonstrating the accuracy and robustness of the proposed approach when addressing distinct environmental monitoring applications, including the detection of disaster-affected areas and deforestation mapping.en
dc.description.affiliationSao Paulo State Univ UNESP, Sci & Technol Inst ICT, BR-12245000 Sao Jose Dos Campos, Brazil
dc.description.affiliationSao Paulo State Univ UNESP, Fac Sci & Technol FCT, BR-19060080 Presidente Prudente, Brazil
dc.description.affiliationSao Paulo State Univ UNESP, Inst Biosci Letters & Exact Sci IBILCE, BR-15054000 Sao Jose Do Rio Preto, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Sci & Technol Inst ICT, BR-12245000 Sao Jose Dos Campos, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Fac Sci & Technol FCT, BR-19060080 Presidente Prudente, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Inst Biosci Letters & Exact Sci IBILCE, BR-15054000 Sao Jose Do Rio Preto, Brazil
dc.description.sponsorshipFunda��o de Amparo � Pesquisa do Estado de S�o Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cient�fico e Tecnol�gico (CNPq)
dc.description.sponsorshipSao Paulo State University (UNESP)
dc.description.sponsorshipIdFAPESP: 2021/01305-6
dc.description.sponsorshipIdFAPESP: 2021/03328-3
dc.description.sponsorshipIdCNPq: 316228/2021-4
dc.format.extent19
dc.identifierhttp://dx.doi.org/10.3390/su15064725
dc.identifier.citationSustainability. Basel: Mdpi, v. 15, n. 6, 19 p., 2023.
dc.identifier.doi10.3390/su15064725
dc.identifier.urihttp://hdl.handle.net/11449/245606
dc.identifier.wosWOS:000959505400001
dc.language.isoeng
dc.publisherMdpi
dc.relation.ispartofSustainability
dc.sourceWeb of Science
dc.subjectanomaly detection
dc.subjecttime series
dc.subjectlandscape dynamics
dc.subjectframework
dc.titleIntegrating Unsupervised Machine Intelligence and Anomaly Detection for Spatio-Temporal Dynamic Mapping Using Remote Sensing Image Seriesen
dc.typeArtigo
dcterms.rightsHolderMdpi
dspace.entity.typePublication
unesp.author.orcid0000-0002-4899-3983[5]
unesp.author.orcid0000-0002-1073-9939[7]
unesp.departmentEstatística - FCTpt

Arquivos