Logotipo do repositório
 

Publicação:
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene

dc.contributor.authorAlmeida, Clara M.
dc.contributor.authorPrioli, Rodrigo
dc.contributor.authorFragneaud, Benjamin
dc.contributor.authorCancado, Luiz Gustavo
dc.contributor.authorPaupitz, Ricardo [UNESP]
dc.contributor.authorGalvao, Douglas S.
dc.contributor.authorDe Cicco, Marcelo
dc.contributor.authorMenezes, Marcos G.
dc.contributor.authorAchete, Carlos A.
dc.contributor.authorCapaz, Rodrigo B.
dc.contributor.institutionInst Nacl Metrol Normalizacao & Qualidade Ind INI
dc.contributor.institutionPontificia Univ Catolica Rio de Janeiro
dc.contributor.institutionInst Cidncias Exatas
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.date.accessioned2018-11-26T16:56:23Z
dc.date.available2018-11-26T16:56:23Z
dc.date.issued2016-08-18
dc.description.abstractThe nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.en
dc.description.affiliationInst Nacl Metrol Normalizacao & Qualidade Ind INI, Div Metrol Mat, Campus Xerem,Av Nossa Senhora das Gracas 50, BR-25250020 Duque De Caxias, RJ, Brazil
dc.description.affiliationPontificia Univ Catolica Rio de Janeiro, Dept Fis, R Marques de Sao Vicente 225, BR-22453900 Rio De Janeiro, RJ, Brazil
dc.description.affiliationInst Cidncias Exatas, Dept Fis, BR-36036900 Juiz De Fora, MG, Brazil
dc.description.affiliationUniv Fed Minas Gerais, Dept Fis, Inst Ciencias Exatas, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Fis, Campus Rio Claro,Av 24A 1515, BR-13506900 Rio Claro, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Fis Gleb Wataghin, R Sergio Buarque de Holanda,777 Cidade Univ, BR-13083859 Campinas, SP, Brazil
dc.description.affiliationUniv Fed Rio de Janeiro, Inst Fis, Av Athos da Silveira Ramos,149 Cidade Univ, BR-21941590 Rio De Janeiro, RJ, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Fis, Campus Rio Claro,Av 24A 1515, BR-13506900 Rio Claro, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipgrant PRONAMETRO
dc.description.sponsorshipIdFAPESP: 2014/15521-9
dc.description.sponsorshipIdFAPESP: 2013/08293-7
dc.description.sponsorshipIdgrant PRONAMETRO: 52600.056330/2012
dc.description.sponsorshipIdgrant PRONAMETRO: 52600.030929/2014
dc.format.extent9
dc.identifierhttp://dx.doi.org/10.1038/srep31569
dc.identifier.citationScientific Reports. London: Nature Publishing Group, v. 6, 9 p., 2016.
dc.identifier.doi10.1038/srep31569
dc.identifier.fileWOS000381558500001.pdf
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11449/161827
dc.identifier.wosWOS:000381558500001
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofScientific Reports
dc.relation.ispartofsjr1,533
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleGiant and Tunable Anisotropy of Nanoscale Friction in Grapheneen
dc.typeArtigo
dcterms.rightsHolderNature Publishing Group
dspace.entity.typePublication
unesp.author.orcid0000-0001-8170-6117[3]
unesp.author.orcid0000-0003-1254-6353[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentFísica - IGCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000381558500001.pdf
Tamanho:
1.6 MB
Formato:
Adobe Portable Document Format
Descrição: