Logotipo do repositório
 

Publicação:
Artificial neural networks: A novel approach to analysing the nutritional ecology of a blowfly species, Chrysomya megacephala

dc.contributor.authorBianconi, André [UNESP]
dc.contributor.authorvon Zuben, Cláudio J. [UNESP]
dc.contributor.authorde Serapião, Adriane B.S. [UNESP]
dc.contributor.authorGovone, José S. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T21:24:23Z
dc.date.available2022-04-28T21:24:23Z
dc.date.issued2010-01-01
dc.description.abstractBionomic features of blowflies may be clarified and detailed by the deployment of appropriate modelling techniques such as artificial neural networks, which are mathematical tools widely applied to the resolution of complex biological problems. The principal aim of this work was to use three well-known neural networks, namely Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Adaptive Neural Network-Based Fuzzy Inference System (ANFIS), to ascertain whether these tools would be able to outperform a classical statistical method (multiple linear regression) in the prediction of the number of resultant adults (survivors) of experimental populations of Chrysomya megacephala (F.) (Diptera: Calliphoridae), based on initial larval density (number of larvae), amount of available food, and duration of immature stages. The coefficient of determination (R2) derived from the RBF was the lowest in the testing subset in relation to the other neural networks, even though its R2 in the training subset exhibited virtually a maximum value. The ANFIS model permitted the achievement of the best testing performance. Hence this model was deemed to be more effective in relation to MLP and RBF for predicting the number of survivors. All three networks outperformed the multiple linear regression, indicating that neural models could be taken as feasible techniques for predicting bionomic variables concerning the nutritional dynamics of blowflies.en
dc.description.affiliationDepartamento de Botânica Instituto de Biociências - Unesp - São Paulo State University, Cep 13506-900, Avenida 24-A
dc.description.affiliationDepartamento de Zoologia IB Unesp
dc.description.affiliationDepartamento de Estatística MatemáticaAplicada e Computação DEMAC IGCE Unesp
dc.description.affiliationUnespDepartamento de Botânica Instituto de Biociências - Unesp - São Paulo State University, Cep 13506-900, Avenida 24-A
dc.description.affiliationUnespDepartamento de Zoologia IB Unesp
dc.description.affiliationUnespDepartamento de Estatística MatemáticaAplicada e Computação DEMAC IGCE Unesp
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.identifierhttp://dx.doi.org/10.1673/031.010.5801
dc.identifier.citationJournal of Insect Science, v. 10, n. 1, 2010.
dc.identifier.doi10.1673/031.010.5801
dc.identifier.issn1536-2442
dc.identifier.scopus2-s2.0-77955968569
dc.identifier.urihttp://hdl.handle.net/11449/226016
dc.language.isoeng
dc.relation.ispartofJournal of Insect Science
dc.sourceScopus
dc.subjectInsect bionomics
dc.subjectLarval density
dc.subjectLife-history
dc.subjectMass rearing
dc.titleArtificial neural networks: A novel approach to analysing the nutritional ecology of a blowfly species, Chrysomya megacephalaen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claropt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentBotânica - IBEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos