Synthetic Slowness Shear Well-Log Prediction Using Supervised Machine Learning Models
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The shear slowness well-log is a fundamental feature used in reservoir modeling, geomechanics, elastic properties, and borehole stability. This data is indirectly measured by well-logs and assists the geological, petrophysical, and geophysical subsurface characterization. However, the acquisition of shear slowness is not a standard procedure in the well-logging program, especially in mature fields that have a limited logging scope. In this research, we propose to develop machine learning models to create synthetic shear slowness well-logs to fill this gap. We used standard well-log features such as natural gamma-ray, density log, neutron porosity, resistivity logs, and compressional slowness as input data to train the models, and successfully predicted a synthetic shear slowness well-log. Additionally, we created five supervised models using Neural Networks, AdaBoost, XGBoost, and CatBoost algorithms. Among all models created, the neural network algorithm provided the most optimized model, using multi-layer perceptron architecture reaching impressive scores as R 2 of 0.9306, adjusted R 2 of 0.9304, and MSE less than 0.0694.
Descrição
Palavras-chave
Forecasting Time-series, Machine learning, Regression models, Synthetic well-logs
Idioma
Inglês
Citação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13588 LNAI, p. 115-130.




