Fractional Dynamics: A Comprehensive Exploration of Non-integer Order Systems
| dc.contributor.author | Abreu, Felipe Lima de | |
| dc.contributor.author | Filipus, Murilo Cesar | |
| dc.contributor.author | Oliveira, Clivaldo de | |
| dc.contributor.author | Balthazar, José Manoel [UNESP] | |
| dc.contributor.author | Ribeiro, Mauricio A. [UNESP] | |
| dc.contributor.author | Tusset, Angelo Marcelo | |
| dc.contributor.author | Varanis, Marcus | |
| dc.contributor.institution | Faculdade de Engenharia | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidade Tecnológica Federal do Paraná | |
| dc.contributor.institution | Universidade Federal de Mato Grosso do Sul (UFMS) | |
| dc.date.accessioned | 2025-04-29T20:02:22Z | |
| dc.date.issued | 2024-01-01 | |
| dc.description.abstract | This article delves into the applications of fractional calculus, an extension of classical calculus that introduces non-integer derivative orders. The primary focus of this research is to present a methodology for simulating fractional differential equations and to explore the effects of fractional order in two well-known dynamic systems: the Van der Pol and Duffing systems. These systems are known for their nonlinear characteristics and, in certain cases, exhibit complex and rich dynamic behaviors. Initially, the Grunwald-Letnikov definition of fractional derivatives is introduced, followed by the general numerical solution for a fractional differential equation. The Van der Pol system is modified by the inclusion of a fractional time derivative of order q, reducing the integer order of the system to 1 + q, while the Duffing system is modified in terms of viscous damping, by the add of a fractional damping, which is now related to the fractional variation in displacement. The dynamics of the systems are characterized using classical methods of nonlinear dynamics, such as time-response, Poincaré sections, bifurcation diagrams and fast Fourier transform, as well as more advanced approaches, such as the continuous wavelet transform (CWT) and the Hilbert-Huang transform (HHT). | en |
| dc.description.affiliation | Universidade Federal da Grande Dourados Faculdade de Engenharia, MS | |
| dc.description.affiliation | Universidade Estadual Paulista Departamento de Engenharia Elétrica, SP | |
| dc.description.affiliation | Universidade Tecnológica Federal do Paraná, PR | |
| dc.description.affiliation | Universidade Federal de Mato Grosso do Sul Instituto de Física, MS | |
| dc.description.affiliationUnesp | Universidade Estadual Paulista Departamento de Engenharia Elétrica, SP | |
| dc.identifier | http://dx.doi.org/10.1590/1806-9126-RBEF-2024-0171 | |
| dc.identifier.citation | Revista Brasileira de Ensino de Fisica, v. 46. | |
| dc.identifier.doi | 10.1590/1806-9126-RBEF-2024-0171 | |
| dc.identifier.issn | 0102-4744 | |
| dc.identifier.scopus | 2-s2.0-85213489403 | |
| dc.identifier.uri | https://hdl.handle.net/11449/305188 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Revista Brasileira de Ensino de Fisica | |
| dc.source | Scopus | |
| dc.subject | Fractional calculus | |
| dc.subject | Nonlinear dynamics | |
| dc.subject | Time-frequency analysis | |
| dc.title | Fractional Dynamics: A Comprehensive Exploration of Non-integer Order Systems | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication |

