Logo do repositório

Fractional Dynamics: A Comprehensive Exploration of Non-integer Order Systems

dc.contributor.authorAbreu, Felipe Lima de
dc.contributor.authorFilipus, Murilo Cesar
dc.contributor.authorOliveira, Clivaldo de
dc.contributor.authorBalthazar, José Manoel [UNESP]
dc.contributor.authorRibeiro, Mauricio A. [UNESP]
dc.contributor.authorTusset, Angelo Marcelo
dc.contributor.authorVaranis, Marcus
dc.contributor.institutionFaculdade de Engenharia
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Tecnológica Federal do Paraná
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.date.accessioned2025-04-29T20:02:22Z
dc.date.issued2024-01-01
dc.description.abstractThis article delves into the applications of fractional calculus, an extension of classical calculus that introduces non-integer derivative orders. The primary focus of this research is to present a methodology for simulating fractional differential equations and to explore the effects of fractional order in two well-known dynamic systems: the Van der Pol and Duffing systems. These systems are known for their nonlinear characteristics and, in certain cases, exhibit complex and rich dynamic behaviors. Initially, the Grunwald-Letnikov definition of fractional derivatives is introduced, followed by the general numerical solution for a fractional differential equation. The Van der Pol system is modified by the inclusion of a fractional time derivative of order q, reducing the integer order of the system to 1 + q, while the Duffing system is modified in terms of viscous damping, by the add of a fractional damping, which is now related to the fractional variation in displacement. The dynamics of the systems are characterized using classical methods of nonlinear dynamics, such as time-response, Poincaré sections, bifurcation diagrams and fast Fourier transform, as well as more advanced approaches, such as the continuous wavelet transform (CWT) and the Hilbert-Huang transform (HHT).en
dc.description.affiliationUniversidade Federal da Grande Dourados Faculdade de Engenharia, MS
dc.description.affiliationUniversidade Estadual Paulista Departamento de Engenharia Elétrica, SP
dc.description.affiliationUniversidade Tecnológica Federal do Paraná, PR
dc.description.affiliationUniversidade Federal de Mato Grosso do Sul Instituto de Física, MS
dc.description.affiliationUnespUniversidade Estadual Paulista Departamento de Engenharia Elétrica, SP
dc.identifierhttp://dx.doi.org/10.1590/1806-9126-RBEF-2024-0171
dc.identifier.citationRevista Brasileira de Ensino de Fisica, v. 46.
dc.identifier.doi10.1590/1806-9126-RBEF-2024-0171
dc.identifier.issn0102-4744
dc.identifier.scopus2-s2.0-85213489403
dc.identifier.urihttps://hdl.handle.net/11449/305188
dc.language.isoeng
dc.relation.ispartofRevista Brasileira de Ensino de Fisica
dc.sourceScopus
dc.subjectFractional calculus
dc.subjectNonlinear dynamics
dc.subjectTime-frequency analysis
dc.titleFractional Dynamics: A Comprehensive Exploration of Non-integer Order Systemsen
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções