Publicação: Performance of the Angstrom-Prescott Model (A-P) and SVM and ANN techniques to estimate daily global solar irradiation in Botucatu/SP/Brazil
dc.contributor.author | da Silva, Maurício Bruno Prado [UNESP] | |
dc.contributor.author | Francisco Escobedo, João [UNESP] | |
dc.contributor.author | Juliana Rossi, Taiza [UNESP] | |
dc.contributor.author | dos Santos, Cícero Manoel | |
dc.contributor.author | da Silva, Sílvia Helena Modenese Gorla [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal do Pará (UFPA) | |
dc.date.accessioned | 2018-12-11T17:12:09Z | |
dc.date.available | 2018-12-11T17:12:09Z | |
dc.date.issued | 2017-07-01 | |
dc.description.abstract | This study describes the comparative study of different methods for estimating daily global solar irradiation (H): Angstrom-Prescott (A-P) model and two Machine Learning techniques (ML) – Support Vector Machine (SVM) and Artificial Neural Network (ANN). The H database was measured from 1996 to 2011 in Botucatu/SP/Brazil. Different combinations of input variables were adopted. MBE, RMSE, d Willmott, r and r2 statistical indicators obtained in the validation of A-P and SVM and ANN models showed that: SVM technique has better performance in estimating H than A-P and ANN models. A-P model has better performance in estimating H than ANN. | en |
dc.description.affiliation | Department of Rural Engineering - FCA UNESP | |
dc.description.affiliation | Agriculture College - UFPA | |
dc.description.affiliation | Experimental Campus – UNESP | |
dc.description.affiliationUnesp | Department of Rural Engineering - FCA UNESP | |
dc.description.affiliationUnesp | Experimental Campus – UNESP | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.format.extent | 11-23 | |
dc.identifier | http://dx.doi.org/10.1016/j.jastp.2017.04.001 | |
dc.identifier.citation | Journal of Atmospheric and Solar-Terrestrial Physics, v. 160, p. 11-23. | |
dc.identifier.doi | 10.1016/j.jastp.2017.04.001 | |
dc.identifier.file | 2-s2.0-85019691589.pdf | |
dc.identifier.issn | 1364-6826 | |
dc.identifier.scopus | 2-s2.0-85019691589 | |
dc.identifier.uri | http://hdl.handle.net/11449/174626 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Atmospheric and Solar-Terrestrial Physics | |
dc.relation.ispartofsjr | 0,696 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Angstrom-Prescott | |
dc.subject | Artificial intelligence | |
dc.subject | Meteorological variables | |
dc.subject | Solar radiation | |
dc.subject | Statistical modeling | |
dc.title | Performance of the Angstrom-Prescott Model (A-P) and SVM and ANN techniques to estimate daily global solar irradiation in Botucatu/SP/Brazil | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.department | Engenharia Rural - FCA | pt |