Publicação:
Neural parameter calibration for reliable hysteresis prediction in bolted joint assemblies

dc.contributor.authorAlmeida, Estevão Fuzaro [UNESP]
dc.contributor.authorSilva, Samuel [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)pt
dc.date.accessioned2025-03-12T17:33:36Z
dc.date.available2025-03-12T17:33:36Z
dc.date.issued2025-03-09
dc.description.abstractBolted joints are a common way for connecting multiple structures, and ensuring their safe operation is crucial. Changes in operational conditions, such as variations in tightening torque, can introduce hysteresis mechanisms and complex nonlinearities, making it challenging to analyze and diagnose any issues. Vibration measurements can be used to calibrate a reduced-order model that captures the effects of energy dissipation in bolted joints, such as a Bouc-Wen oscillator. However, the nonlinearities inherent in these systems make calibration problematic, typically requiring ad-hoc knowledge and considerations. In this work, we propose to use a new neural parameter calibration paradigm for this computational model, utilizing a physics-informed neural network to estimate the Bouc-Wen model parameters from time series data. The approach involves using a neural differential equation to represent the hysteresis effect and extracting coefficients from the vibration time series to inform the model. The method generates accurate predictions for the hysteresis loop in a matter of minutes, demonstrating the potential of this approach for real-time monitoring and diagnosis of bolted joint assemblies.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2022/16156-9
dc.description.versionVersão final do editor
dc.identifier.lattes1577918465935468
dc.identifier.orcid000-0001-7406-8698
dc.identifier.urihttps://hdl.handle.net/11449/295405
dc.language.isoeng
dc.relation.ispartofProceedings of the XX International Symposium on Dynamic Problems of Mechanics
dc.rights.accessRightsAcesso abertopt
dc.subjectBolted jointsen
dc.subjectHysteresis mechanismsen
dc.subjectModel calibrationen
dc.subjectNeural differential equationen
dc.titleNeural parameter calibration for reliable hysteresis prediction in bolted joint assembliesen
dc.title.alternativeCalibração neural de parâmetros para previsão confiável de histerese em juntas aparafusadaspt
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Mecânica - FEISpt
unesp.embargoOnlinept

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
almeida_ef_versaoeditor_ilha_neural.pdf
Tamanho:
1.23 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.14 KB
Formato:
Item-specific license agreed upon to submission
Descrição: