Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Determination of application volume for coffee plantations using artificial neural networks and remote sensing

dc.contributor.authorOliveira, Mailson Freire de [UNESP]
dc.contributor.authorSantos, Adão Felipe dos
dc.contributor.authorKazama, Elizabeth Haruna
dc.contributor.authorRolim, Glauco de Souza [UNESP]
dc.contributor.authorSilva, Rouverson Pereira da [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.contributor.institutionUniversity of Franca
dc.date.accessioned2021-06-25T11:15:18Z
dc.date.available2021-06-25T11:15:18Z
dc.date.issued2021-05-01
dc.description.abstractMethods for optimizing the application of phytosanitary products can be an alternative for sustainable agriculture. Such methods can be achieved with the use of artificial intelligence and remote sensing techniques. Our experiments were carried out in a commercial coffee plantation, where morphological variables (height and diameter) and vegetation indexes (normalized difference vegetation index, NDVI and normalized difference red edge, NDRE) were collected in the upper, medium, and lower thirds of the coffee plant. From the remote sensing data, experiments were developed to determine the best neural network topology, in terms of accuracy (RMSE) and precision (R2) and type (Multilayer Perceptron “MLP” and Radial Basis Function “RBF”), to estimate morphological variables. From these results, we evaluated the possibility of applying pesticides at a variable rate, using the tree row volume principle. The results show that, using remote sensing and artificial neural networks (MLP), it is possible to estimate coffee tree volume with reasonable accuracy. This can be done using a multi-layer perceptron model to estimate coffee tree height and diameter using vegetation indexes of different parts of the plant as input.en
dc.description.affiliationDepartment of Engineering and Mathematical Sciences São Paulo State University (UNESP)
dc.description.affiliationDepartment of Agriculture Federal University of Lavras (UFLA)
dc.description.affiliationUniversity of Franca
dc.description.affiliationUnespDepartment of Engineering and Mathematical Sciences São Paulo State University (UNESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.identifierhttp://dx.doi.org/10.1016/j.compag.2021.106096
dc.identifier.citationComputers and Electronics in Agriculture, v. 184.
dc.identifier.doi10.1016/j.compag.2021.106096
dc.identifier.issn0168-1699
dc.identifier.scopus2-s2.0-85104978665
dc.identifier.urihttp://hdl.handle.net/11449/208628
dc.language.isoeng
dc.relation.ispartofComputers and Electronics in Agriculture
dc.sourceScopus
dc.subjectCoffee canopy
dc.subjectDigital agriculture
dc.subjectMachine learning
dc.subjectVariable rate spraying
dc.subjectVegetation index
dc.titleDetermination of application volume for coffee plantations using artificial neural networks and remote sensingen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentCiências Exatas - FCAVpt
unesp.departmentEngenharia Rural - FCAVpt

Arquivos