Logotipo do repositório
 

Publicação:
Automatic segmentation of the secondary austenite-phase island precipitates in a superduplex stainless steel weld metal

dc.contributor.authorAlbuquerque, Victor H. C.
dc.contributor.authorNakamura, Rodrigo Y. M. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorSilva, Cleiton C.
dc.contributor.authorTavares, Joao Manuel R. S.
dc.contributor.authorTavares, JMRS
dc.contributor.authorJorge, RMN
dc.contributor.institutionUniv Fortaleza
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fed Ceara
dc.contributor.institutionUniv Porto
dc.date.accessioned2020-12-10T19:33:12Z
dc.date.available2020-12-10T19:33:12Z
dc.date.issued2012-01-01
dc.description.abstractDuplex and superduplex stainless steels are class of materials of a high importance for engineering purposes, since they have good mechanical properties combination and also are very resistant to corrosion. It is known as well that the chemical composition of such steels is very important to maintain some desired properties. In the past years, some works have reported that. 2 precipitation improves the toughness of such steels, and its quantification may reveals some important information about steel quality. Thus, we propose in this work the automatic segmentation of. 2 precipitation using two pattern recognition techniques: Optimum-Path Forest (OPF) and a Bayesian classifier. To the best of our knowledge, this if the first time that machine learning techniques are applied into this area. The experimental results showed that both techniques achieved similar and good recognition rates.en
dc.description.affiliationUniv Fortaleza, Ctr Ciencias Tecnol, Fortaleza, Ceara, Brazil
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Comp, Bauru, Brazil
dc.description.affiliationUniv Fed Ceara, Dept Engn Met & Mat, Fortaleza, Ceara, Brazil
dc.description.affiliationUniv Porto, Fac Engn, Oporto, Portugal
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Comp, Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCearense Foundation for the Support of Scientific and Technological Development (FUNCAP)
dc.description.sponsorshipUNIFOR
dc.description.sponsorshipIdFAPESP: 2009/16206-1
dc.format.extent161-166
dc.identifier.citationComputational Vision And Medical Image Processing: Vipimage 2011. Boca Raton: Crc Press-taylor & Francis Group, p. 161-166, 2012.
dc.identifier.urihttp://hdl.handle.net/11449/196095
dc.identifier.wosWOS:000392382300031
dc.language.isoeng
dc.publisherCrc Press-taylor & Francis Group
dc.relation.ispartofComputational Vision And Medical Image Processing: Vipimage 2011
dc.sourceWeb of Science
dc.titleAutomatic segmentation of the secondary austenite-phase island precipitates in a superduplex stainless steel weld metalen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderCrc Press-taylor & Francis Group
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos