Publicação: Automatic segmentation of the secondary austenite-phase island precipitates in a superduplex stainless steel weld metal
dc.contributor.author | Albuquerque, Victor H. C. | |
dc.contributor.author | Nakamura, Rodrigo Y. M. [UNESP] | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Silva, Cleiton C. | |
dc.contributor.author | Tavares, Joao Manuel R. S. | |
dc.contributor.author | Tavares, JMRS | |
dc.contributor.author | Jorge, RMN | |
dc.contributor.institution | Univ Fortaleza | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Univ Fed Ceara | |
dc.contributor.institution | Univ Porto | |
dc.date.accessioned | 2020-12-10T19:33:12Z | |
dc.date.available | 2020-12-10T19:33:12Z | |
dc.date.issued | 2012-01-01 | |
dc.description.abstract | Duplex and superduplex stainless steels are class of materials of a high importance for engineering purposes, since they have good mechanical properties combination and also are very resistant to corrosion. It is known as well that the chemical composition of such steels is very important to maintain some desired properties. In the past years, some works have reported that. 2 precipitation improves the toughness of such steels, and its quantification may reveals some important information about steel quality. Thus, we propose in this work the automatic segmentation of. 2 precipitation using two pattern recognition techniques: Optimum-Path Forest (OPF) and a Bayesian classifier. To the best of our knowledge, this if the first time that machine learning techniques are applied into this area. The experimental results showed that both techniques achieved similar and good recognition rates. | en |
dc.description.affiliation | Univ Fortaleza, Ctr Ciencias Tecnol, Fortaleza, Ceara, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, UNESP, Dept Comp, Bauru, Brazil | |
dc.description.affiliation | Univ Fed Ceara, Dept Engn Met & Mat, Fortaleza, Ceara, Brazil | |
dc.description.affiliation | Univ Porto, Fac Engn, Oporto, Portugal | |
dc.description.affiliationUnesp | Univ Estadual Paulista, UNESP, Dept Comp, Bauru, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Cearense Foundation for the Support of Scientific and Technological Development (FUNCAP) | |
dc.description.sponsorship | UNIFOR | |
dc.description.sponsorshipId | FAPESP: 2009/16206-1 | |
dc.format.extent | 161-166 | |
dc.identifier.citation | Computational Vision And Medical Image Processing: Vipimage 2011. Boca Raton: Crc Press-taylor & Francis Group, p. 161-166, 2012. | |
dc.identifier.uri | http://hdl.handle.net/11449/196095 | |
dc.identifier.wos | WOS:000392382300031 | |
dc.language.iso | eng | |
dc.publisher | Crc Press-taylor & Francis Group | |
dc.relation.ispartof | Computational Vision And Medical Image Processing: Vipimage 2011 | |
dc.source | Web of Science | |
dc.title | Automatic segmentation of the secondary austenite-phase island precipitates in a superduplex stainless steel weld metal | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp | |
dcterms.rightsHolder | Crc Press-taylor & Francis Group | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |