Publicação: THREE TIME SCALE SINGULAR PERTURBATION PROBLEMS AND NONSMOOTH DYNAMICAL SYSTEMS
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Brown Univ
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
In this paper we study three time scale singular perturbation problemsepsilon x ' = f(x, epsilon, delta), y ' = g(x, epsilon, delta), z ' = delta h(x, delta, delta),where x = (x, y, z) is an element of R-n x R-m x R-p, epsilon and delta are two independent small parameters (0 < epsilon, delta << 1), and f, g, h are C-r functions, where r is big enough for our purposes. We establish conditions for the existence of compact invariant sets (singular points, periodic and homoclinic orbits) when epsilon, delta > 0. Our main strategy is to consider three time scales which generate three different limit problems. In addition, we prove that double regularization of nonsmooth dynamical systems with self-intersecting switching variety provides a class of three time scale singular perturbation problems.
Descrição
Palavras-chave
Geometric theory, singular perturbations, three time scales, nonsmooth dynamical systems
Idioma
Inglês
Como citar
Quarterly Of Applied Mathematics. Boston: Brown Univ, v. 72, n. 4, p. 673-687, 2014.