Publicação: THREE TIME SCALE SINGULAR PERTURBATION PROBLEMS AND NONSMOOTH DYNAMICAL SYSTEMS
dc.contributor.author | Cardin, Pedro T. [UNESP] | |
dc.contributor.author | Da Silva, Paulo R. [UNESP] | |
dc.contributor.author | Teixeira, Marco A. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2015-03-18T15:56:48Z | |
dc.date.available | 2015-03-18T15:56:48Z | |
dc.date.issued | 2014-01-01 | |
dc.description.abstract | In this paper we study three time scale singular perturbation problemsepsilon x ' = f(x, epsilon, delta), y ' = g(x, epsilon, delta), z ' = delta h(x, delta, delta),where x = (x, y, z) is an element of R-n x R-m x R-p, epsilon and delta are two independent small parameters (0 < epsilon, delta << 1), and f, g, h are C-r functions, where r is big enough for our purposes. We establish conditions for the existence of compact invariant sets (singular points, periodic and homoclinic orbits) when epsilon, delta > 0. Our main strategy is to consider three time scales which generate three different limit problems. In addition, we prove that double regularization of nonsmooth dynamical systems with self-intersecting switching variety provides a class of three time scale singular perturbation problems. | en |
dc.description.affiliation | UNESP, Fac Engn Ilha Solteira, Dept Matemat, BR-15385000 Ilha Solteira, SP, Brazil | |
dc.description.affiliation | UNESP, Inst Biociencias Letras & Ciencias Exatas, Dept Matemat, BR-15054000 S J Rio Preto, SP, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil | |
dc.description.affiliationUnesp | UNESP, Fac Engn Ilha Solteira, Dept Matemat, BR-15385000 Ilha Solteira, SP, Brazil | |
dc.description.affiliationUnesp | UNESP, Inst Biociencias Letras & Ciencias Exatas, Dept Matemat, BR-15054000 S J Rio Preto, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 13/21947-6 | |
dc.description.sponsorshipId | FAPESP: 12/18780-0 | |
dc.description.sponsorshipId | CNPq: 300596/2009-0 | |
dc.description.sponsorshipId | CAPES: 88881.030454/2013-01 | |
dc.description.sponsorshipId | FP7-PEOPLE-2012-IRSES 318999 BREUDS | |
dc.format.extent | 673-687 | |
dc.identifier | http://www.ams.org/journals/qam/2014-72-04/S0033-569X-2014-01360-X/ | |
dc.identifier.citation | Quarterly Of Applied Mathematics. Boston: Brown Univ, v. 72, n. 4, p. 673-687, 2014. | |
dc.identifier.issn | 0033-569X | |
dc.identifier.lattes | 8032879915906661 | |
dc.identifier.orcid | 0000-0002-8723-8200 | |
dc.identifier.uri | http://hdl.handle.net/11449/117698 | |
dc.identifier.wos | WOS:000346649200005 | |
dc.language.iso | eng | |
dc.publisher | Brown Univ | |
dc.relation.ispartof | Quarterly Of Applied Mathematics | |
dc.relation.ispartofjcr | 0.853 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Geometric theory | en |
dc.subject | singular perturbations | en |
dc.subject | three time scales | en |
dc.subject | nonsmooth dynamical systems | en |
dc.title | THREE TIME SCALE SINGULAR PERTURBATION PROBLEMS AND NONSMOOTH DYNAMICAL SYSTEMS | en |
dc.type | Artigo | |
dcterms.rightsHolder | Brown Univ | |
dspace.entity.type | Publication | |
unesp.author.lattes | 8032879915906661[1] | |
unesp.author.orcid | 0000-0002-5386-9282[3] | |
unesp.author.orcid | 0000-0002-8723-8200[1] | |
unesp.author.orcid | 0000-0002-1430-5986[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteira | pt |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - FEIS | pt |
unesp.department | Matemática - IBILCE | pt |