Logotipo do repositório
 

Publicação:
Optimal Boussinesq model for shallow-water waves interacting with a microstructure

dc.contributor.authorGarnier, Josselin
dc.contributor.authorKraenkel, Roberto André [UNESP]
dc.contributor.authorNachbin, André
dc.contributor.institutionUniversité Paris 7
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstituto de Matemática Pura e Aplicada
dc.date.accessioned2014-05-27T11:22:37Z
dc.date.available2014-05-27T11:22:37Z
dc.date.issued2007-10-12
dc.description.abstractIn this paper, we consider the propagation of water waves in a long-wave asymptotic regime, when the bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full potential theory model and of a family of reduced Boussinesq systems parametrized by a free parameter that is the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting effective Korteweg-de Vries (KdV) equations. We show that it is possible to choose the free parameter of the reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the effective wave propagation. In particular, nonlinearity is enhanced and we can distinguish two regimes depending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom case. © 2007 The American Physical Society.en
dc.description.affiliationLaboratoire de Probabilités et Modèles Aléatoires Laboratoire Jacques-Louis Lions Université Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05
dc.description.affiliationInstituto de Fisica Teorica-UNESP, R. Pamplona 145, 01405-900 São Paulo
dc.description.affiliationInstituto de Matemática Pura e Aplicada, Est. D Castorina 110, Jardim Botĝnico, RJ 22460-320
dc.description.affiliationUnespInstituto de Fisica Teorica-UNESP, R. Pamplona 145, 01405-900 São Paulo
dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.76.046311
dc.identifier.citationPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 76, n. 4, 2007.
dc.identifier.doi10.1103/PhysRevE.76.046311
dc.identifier.file2-s2.0-35248899504.pdf
dc.identifier.issn1539-3755
dc.identifier.issn1550-2376
dc.identifier.scopus2-s2.0-35248899504
dc.identifier.urihttp://hdl.handle.net/11449/69937
dc.language.isoeng
dc.relation.ispartofPhysical Review E: Statistical, Nonlinear, and Soft Matter Physics
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAsymptotic analysisen
dc.subjectMathematical modelsen
dc.subjectProblem solvingen
dc.subjectVelocity measurementen
dc.subjectWave propagationen
dc.subjectMultiscale asymptotic analysisen
dc.subjectOptimal Boussinesq modelsen
dc.subjectShallow water wavesen
dc.subjectNonlinear equationsen
dc.titleOptimal Boussinesq model for shallow-water waves interacting with a microstructureen
dc.typeArtigo
dcterms.licensehttp://publish.aps.org/authors/transfer-of-copyright-agreement
dspace.entity.typePublication

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-35248899504.pdf
Tamanho:
188.28 KB
Formato:
Adobe Portable Document Format