Logotipo do repositório
 

Publicação:
Glioblastoma Bystander Cell Therapy: Improvements in Treatment and Insights into the Therapy Mechanisms

dc.contributor.authorGuerra-Rebollo, Marta
dc.contributor.authorNogueira de Moraes, Carolina [UNESP]
dc.contributor.authorAlcoholado, Cristina
dc.contributor.authorSoler-Botija, Carolina
dc.contributor.authorSanchez-Cid, Lourdes
dc.contributor.authorVila, Olaia F.
dc.contributor.authorMeca-Cortés, Oscar
dc.contributor.authorRamos-Romero, Sara
dc.contributor.authorRubio, Nuria
dc.contributor.authorBecerra, José
dc.contributor.authorBlanco, Jeronimo
dc.contributor.authorGarrido, Cristina
dc.contributor.institutionCatalonian Institute for Advanced Chemistry (IQAC-CSIC)
dc.contributor.institutionBiomaterials and Nanomedicine (CIBER-BBN)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionBiomedical Research Institute of Málaga (IBIMA)
dc.contributor.institutionHealth Science Research Institute Germans Trias i Pujol
dc.contributor.institutionCarlos III Health Institute
dc.contributor.institutionColumbia University
dc.contributor.institutionUniversity of Barcelona
dc.contributor.institutionMálaga
dc.date.accessioned2019-10-06T16:00:12Z
dc.date.available2019-10-06T16:00:12Z
dc.date.issued2018-12-21
dc.description.abstractA preclinical model of glioblastoma (GB) bystander cell therapy using human adipose mesenchymal stromal cells (hAMSCs) is used to address the issues of cell availability, quality, and feasibility of tumor cure. We show that a fast proliferating variety of hAMSCs expressing thymidine kinase (TK) has therapeutic capacity equivalent to that of TK-expressing hAMSCs and can be used in a multiple-inoculation procedure to reduce GB tumors to a chronically inhibited state. We also show that up to 25% of unmodified hAMSCs can be tolerated in the therapeutic procedure without reducing efficacy. Moreover, mimicking a clinical situation, tumor debulking previous to cell therapy inhibits GB tumor growth. To understand these striking results at a cellular level, we used a bioluminescence imaging strategy and showed that tumor-implanted therapeutic cells do not proliferate, are unaffected by GCV, and spontaneously decrease to a stable level. Moreover, using the CLARITY procedure for tridimensional visualization of fluorescent cells in transparent brains, we find therapeutic cells forming vascular-like structures that often associate with tumor cells. In vitro experiments show that therapeutic cells exposed to GCV produce cytotoxic extracellular vesicles and suggest that a similar mechanism may be responsible for the in vivo therapeutic effectiveness of TK-expressing hAMSCs.en
dc.description.affiliationCell Therapy Group Catalonian Institute for Advanced Chemistry (IQAC-CSIC)
dc.description.affiliationNetworking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN)
dc.description.affiliationDepartment of Animal Reproduction and Veterinary Radiology College of Veterinary Medicine and Animal Science São Paulo State University UNESP
dc.description.affiliationDepartment of Cell Biology Genetics and Physiology Faculty of Sciences University of Málaga Biomedical Research Institute of Málaga (IBIMA)
dc.description.affiliationICREC Research Program Health Science Research Institute Germans Trias i Pujol
dc.description.affiliationCIBER Cardiovascular Carlos III Health Institute
dc.description.affiliationDepartment of Biomedical Engineering Columbia University
dc.description.affiliationDepartment of Cell Biology Physiology & Immunology Faculty of Biology University of Barcelona
dc.description.affiliationLaboratory of Bioengineering and Tissue Regeneration (LABRET) Andalusian Center for Nanomedicine and Biotechnology-BIONAND Málaga
dc.description.affiliationUnespDepartment of Animal Reproduction and Veterinary Radiology College of Veterinary Medicine and Animal Science São Paulo State University UNESP
dc.description.sponsorshipCentro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina
dc.description.sponsorshipInstituto de Salud Carlos III
dc.description.sponsorshipMinisterio de Economía y Competitividad
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipIdMinisterio de Economía y Competitividad: BIO2015-66266-R
dc.description.sponsorshipIdMinisterio de Ciencia e Innovación: SAF2015-64927-C2-1-R
dc.format.extent39-51
dc.identifierhttp://dx.doi.org/10.1016/j.omto.2018.09.002
dc.identifier.citationMolecular Therapy - Oncolytics, v. 11, p. 39-51.
dc.identifier.doi10.1016/j.omto.2018.09.002
dc.identifier.issn2372-7705
dc.identifier.scopus2-s2.0-85054728458
dc.identifier.urihttp://hdl.handle.net/11449/188190
dc.language.isoeng
dc.relation.ispartofMolecular Therapy - Oncolytics
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectbioluminescence
dc.subjectcell therapy
dc.subjectclarity
dc.subjectextracellular vesicle
dc.subjectglioblastoma bystander therapy
dc.subjectHVS-thymidine kinase
dc.subjectin vivo glioblastoma model
dc.subjectmesenchymal stem cell
dc.subjecttransparent brain
dc.titleGlioblastoma Bystander Cell Therapy: Improvements in Treatment and Insights into the Therapy Mechanismsen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária e Zootecnia, Botucatupt
unesp.departmentReprodução Animal e Radiologia Veterinária - FMVZpt

Arquivos