Logo do repositório
 

On the Search for Retrotransposons: Alternative Protocols to Obtain Sequences to Learn Profile Hidden Markov Models

dc.contributor.authorFischer, Carlos N. [UNESP]
dc.contributor.authorCampos, Victor De A. [UNESP]
dc.contributor.authorBarella, Victor H.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2018-12-11T17:20:08Z
dc.date.available2018-12-11T17:20:08Z
dc.date.issued2018-05-01
dc.description.abstractProfile hidden Markov models (pHMMs) have been used to search for transposable elements (TEs) in genomes. For the learning of pHMMs aimed to search for TEs of the retrotransposon class, the conventional protocol is to use the whole internal nucleotide portions of these elements as representative sequences. To further explore the potential of pHMMs in such a search, we propose five alternative ways to obtain the sets of representative sequences of TEs other than the conventional protocol. In this study, we are interested in Bel-PAO, Copia, Gypsy, and DIRS superfamilies from the retrotransposon class. We compared the pHMMs of all six protocols. The test results show that, for each TE superfamily, the pHMMs of at least two of the proposed protocols performed better than the conventional one and that the number of correct predictions provided by the latter can be improved by considering together the results of one or more of the alternative protocols.en
dc.description.affiliationDepartment of Statistics Applied Maths and Computer Sciences UNESP-São Paulo State University, Avenida 24-A, 1515 Rio Claro
dc.description.affiliationDepartment of Computer Sciences Institute of Biosciences UNESP-São Paulo State University
dc.description.affiliationDepartment of Computer Sciences Institute of Mathematical and Computer Sciences USP - University of São Paulo
dc.description.affiliationUnespDepartment of Statistics Applied Maths and Computer Sciences UNESP-São Paulo State University, Avenida 24-A, 1515 Rio Claro
dc.description.affiliationUnespDepartment of Computer Sciences Institute of Biosciences UNESP-São Paulo State University
dc.format.extent517-527
dc.identifierhttp://dx.doi.org/10.1089/cmb.2017.0219
dc.identifier.citationJournal of Computational Biology, v. 25, n. 5, p. 517-527, 2018.
dc.identifier.doi10.1089/cmb.2017.0219
dc.identifier.issn1066-5277
dc.identifier.scopus2-s2.0-85046884932
dc.identifier.urihttp://hdl.handle.net/11449/176325
dc.language.isoeng
dc.relation.ispartofJournal of Computational Biology
dc.relation.ispartofsjr0,824
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectprofile hidden Markov models
dc.subjectretrotransposons
dc.subjecttransposable elements.
dc.titleOn the Search for Retrotransposons: Alternative Protocols to Obtain Sequences to Learn Profile Hidden Markov Modelsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes1858554355077119[1]
unesp.author.orcid0000-0002-5598-6263[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos