Logotipo do repositório
 

Publicação:
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification

dc.contributor.authorLopes, Ricardo
dc.contributor.authorCosta, Kelton [UNESP]
dc.contributor.authorPapa, Joao [UNESP]
dc.contributor.authorSchwenker, F.
dc.contributor.authorAbbas, H. M.
dc.contributor.authorElGayar, N.
dc.contributor.authorTrentin, E.
dc.contributor.institutionInst Pesquisas Eldorado
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T15:37:34Z
dc.date.available2018-11-26T15:37:34Z
dc.date.issued2016-01-01
dc.description.abstractTensor-based representations have been widely pursued in the last years due to the increasing number of high-dimensional datasets, which might be better described by the multilinear algebra. In this paper, we introduced a recent pattern recognition technique called Optimum-Path Forest (OPF) in the context of tensor-oriented applications, as well as we evaluated its robustness to space transformations using Multilinear Principal Component Analysis in both face and human action recognition tasks considering image and video datasets. We have shown OPF can obtain more accurate recognition rates in some situations when working on tensor-oriented feature spaces.en
dc.description.affiliationInst Pesquisas Eldorado, Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.format.extent117-125
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-46182-3_10
dc.identifier.citationArtificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 117-125, 2016.
dc.identifier.doi10.1007/978-3-319-46182-3_10
dc.identifier.fileWOS000389727700010.pdf
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/159238
dc.identifier.wosWOS:000389727700010
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofArtificial Neural Networks In Pattern Recognition
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectOptimum-Path Forest
dc.subjectTensors
dc.subjectGait and face recognition
dc.titleOn the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classificationen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000389727700010.pdf
Tamanho:
313.17 KB
Formato:
Adobe Portable Document Format
Descrição:

Coleções