Publicação: On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
dc.contributor.author | Lopes, Ricardo | |
dc.contributor.author | Costa, Kelton [UNESP] | |
dc.contributor.author | Papa, Joao [UNESP] | |
dc.contributor.author | Schwenker, F. | |
dc.contributor.author | Abbas, H. M. | |
dc.contributor.author | ElGayar, N. | |
dc.contributor.author | Trentin, E. | |
dc.contributor.institution | Inst Pesquisas Eldorado | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T15:37:34Z | |
dc.date.available | 2018-11-26T15:37:34Z | |
dc.date.issued | 2016-01-01 | |
dc.description.abstract | Tensor-based representations have been widely pursued in the last years due to the increasing number of high-dimensional datasets, which might be better described by the multilinear algebra. In this paper, we introduced a recent pattern recognition technique called Optimum-Path Forest (OPF) in the context of tensor-oriented applications, as well as we evaluated its robustness to space transformations using Multilinear Principal Component Analysis in both face and human action recognition tasks considering image and video datasets. We have shown OPF can obtain more accurate recognition rates in some situations when working on tensor-oriented feature spaces. | en |
dc.description.affiliation | Inst Pesquisas Eldorado, Campinas, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil | |
dc.format.extent | 117-125 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-319-46182-3_10 | |
dc.identifier.citation | Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 117-125, 2016. | |
dc.identifier.doi | 10.1007/978-3-319-46182-3_10 | |
dc.identifier.file | WOS000389727700010.pdf | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/11449/159238 | |
dc.identifier.wos | WOS:000389727700010 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Artificial Neural Networks In Pattern Recognition | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Optimum-Path Forest | |
dc.subject | Tensors | |
dc.subject | Gait and face recognition | |
dc.title | On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
dspace.entity.type | Publication |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000389727700010.pdf
- Tamanho:
- 313.17 KB
- Formato:
- Adobe Portable Document Format
- Descrição: