Logotipo do repositório
 

Publicação:
Recommendations for evaluating the performance of background subtraction algorithms for surveillance systems

dc.contributor.authorSanches, Silvio Ricardo Rodrigues
dc.contributor.authorSementille, Antonio Carlos [UNESP]
dc.contributor.authorAguilar, Ivan Abdo
dc.contributor.authorFreire, Valdinei
dc.contributor.institutionUniv Tecnol Fed Parana
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionSimon Fraser Univ
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2021-06-25T16:33:28Z
dc.date.available2021-06-25T16:33:28Z
dc.date.issued2020-09-29
dc.description.abstractBackground subtraction is a prerequisite for a wide range of applications, including video surveillance systems. A significant number of algorithms are often developed and published in different publication mediums in the area, such as workshops, symposiums, conferences, and journals. An important task in presenting a new background subtraction algorithms is to clearly show that its performance outperforms the performance of the state-of-the-art algorithms. In this paper, we present recommendations on how to evaluate the performance of background subtraction algorithms for surveillance systems. We identified, through a systematic mapping, the key steps and components of this evaluation process - procedures, methods, and tools - most used by the authors in each of these steps. Considering this statistical analysis, we perform a theoretical analysis of the most used key components to identify their pros and cons. Then, we define a set of recommendations that aim to standardize and clarify the performance evaluation process of a new background subtraction algorithm.en
dc.description.affiliationUniv Tecnol Fed Parana, Cornelio Procopio, Brazil
dc.description.affiliationUniv Estadual Paulista, Bauru, SP, Brazil
dc.description.affiliationSimon Fraser Univ, Burnaby, BC, Canada
dc.description.affiliationUniv Sao Paulo, Elect Engn, Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Bauru, SP, Brazil
dc.format.extent4421-4454
dc.identifierhttp://dx.doi.org/10.1007/s11042-020-09838-x
dc.identifier.citationMultimedia Tools And Applications. Dordrecht: Springer, v. 80, n. 3, p. 4421-4454, 2021.
dc.identifier.doi10.1007/s11042-020-09838-x
dc.identifier.issn1380-7501
dc.identifier.urihttp://hdl.handle.net/11449/210466
dc.identifier.wosWOS:000573766700004
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofMultimedia Tools And Applications
dc.sourceWeb of Science
dc.subjectBackground subtraction
dc.subjectPerformance assessment
dc.subjectRecommendations
dc.subjectSurveillance systems
dc.titleRecommendations for evaluating the performance of background subtraction algorithms for surveillance systemsen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos