Logo do repositório

Design and Optimization of a Low TSR HDarrieus Turbine Based on Geometry Parameterization Through Joukowsky Transformation

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Amidst the reserves of fossil fuels and surging energy demands, the focus has shifted towards harnessing renewable energy sources like wind energy. This research endeavors to pinpoint the optimal design for a low Tip Speed Ratio (TSR) H-Darrieus turbine at three distinct TSRs: 2.33, 2.64, and 3.09. The study synergizes Computational Fluid Dynamics (CFD) with the Metamodel of Optimal Prognosis (MOP) response surface methodology. The Joukowsky transformation parametrization is applied to symmetrical airfoils, evaluating three pivotal parameters: the a/b ratio, m, and pitch angle. Notably, the pitch angle emerges as the predominant contributor, accounting for over 76% of the effect. Through Gradient-based optimization techniques, the refined turbine design achieved a performance enhancement, peaking at 14.73% for a profile optimized at a TSR of 2.64. Additionally, this work presents an insightful comparison of the non-dimensional velocity and torque coefficients across the considered TSRs. The integration of Ansys Fluent and Ansys OptiSlang in this research affirms a robust, cost-efficient, and fitting approach to dissect fluid dynamics in intricate, computation-intensive CFD models across varying TSRs.

Descrição

Palavras-chave

Computational Fluid Dynamics (CFD), H-Darrieus turbine, Low Tip Speed Ratio (TSR), Metamodel of Optimal Prognosis (MOP), Pitch angle

Idioma

Inglês

Citação

Advances in Transdisciplinary Engineering, v. 54, p. 447-459.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso