Logo do repositório

Plasmon-induced immobilization of xanthene chemosensors toward repurposing as SERS nanotags

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful tool in biophysics, bioanalytical chemistry, and biomedicine due to its unique ability to monitor extracellular chemical activity using fiber optics and multiplexed detection, which are essential for the study of complex biological systems. However, the exceptionally limited choice of SERS nanotags has hindered the practical application of SERS sensing in the fields. Enormous efforts and time are needed to develop new nanotag lines from ab initio for different targeted analytes. This study is inspired by the extensive range of fluorescent chemosensors already in use for various applications and takes a pioneering step toward repurposing them as the SERS nanotags. More specifically, this study explores the potential of plasmon-induced aromatic radical substitution reaction to immobilize xanthene-based chemosensors onto plasmonic nanostructures using a chemical linker without pre-modifying the chemical structures of the chemosensors or compromising the functionality of their binding groups towards specific analytes. Using this proposed method, we immobilize two primary xanthene-based chemosensors and demonstrate their functionality as SERS chemosensors.

Descrição

Palavras-chave

Ion-sensing, Plasmon-induced charge transfer, SERS, SERS nanotags, Xanthene-based chemosensor

Idioma

Inglês

Citação

Surfaces and Interfaces, v. 44.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso