Logotipo do repositório
 

Publicação:
Proton conduction mechanisms in GPTMS/TEOS-derived organic/silica hybrid films prepared by sol-gel process

dc.contributor.authorMonteiro, Daniela A. [UNESP]
dc.contributor.authorGozzi, Giovani [UNESP]
dc.contributor.authorChinaglia, Dante Luis [UNESP]
dc.contributor.authorOliveira, Osvaldo N.
dc.contributor.authorde Vicente, Fabio S. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2020-12-12T02:43:22Z
dc.date.available2020-12-12T02:43:22Z
dc.date.issued2020-09-01
dc.description.abstractIn this work, we employed impedance spectroscopy measurements to investigate the electrical properties of hybrid films obtained with the sol-gel process using 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) at different GPTMS/TEOS molar ratios and temperatures of thermal treatment. For the GPTMS/TEOS-derived samples with 1:1 composition, the DC conductivity (σdc) and charge carrier mobility (μdc) increased linearly with heat treatment temperature from 25 to 80 °C, while σdc increased from 3.2 to 22.4 nS/cm with a 7-fold increase in the GPTMS concentration. These results could be rationalized with the Miller-Abraham model using a charge carrier activation energy of 0.54 ± 0.03 eV. Using FTIR spectroscopy we demonstrated that the structural arrangement of the hybrid matrix involves epoxy ring opening, thus favoring proton conduction, which occurs as in the Grotthuss mechanism via hopping between nearest oxygen atoms of polymerized glycidoxypropyl groups. It is significant that electrical properties of organic/silica matrices can be predicted and tuned for tailored applications using the modeling presented here.en
dc.description.affiliationDepartment of Physics Sao Paulo State University (UNESP) Institute of Geosciences and Exact Sciences
dc.description.affiliationSao Carlos Institute of Physics University of Sao Paulo (USP), CP 369
dc.description.affiliationUnespDepartment of Physics Sao Paulo State University (UNESP) Institute of Geosciences and Exact Sciences
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2011/18149-5
dc.description.sponsorshipIdFAPESP: 2013/14262-7
dc.description.sponsorshipIdCNPq: 427220/2018-1
dc.description.sponsorshipIdCNPq: 444810/2014-5
dc.identifierhttp://dx.doi.org/10.1016/j.synthmet.2020.116448
dc.identifier.citationSynthetic Metals, v. 267.
dc.identifier.doi10.1016/j.synthmet.2020.116448
dc.identifier.issn0379-6779
dc.identifier.lattes8408216349957378
dc.identifier.orcid0000-0001-7696-3004
dc.identifier.scopus2-s2.0-85086068962
dc.identifier.urihttp://hdl.handle.net/11449/201845
dc.language.isoeng
dc.relation.ispartofSynthetic Metals
dc.sourceScopus
dc.subjectConduction mechanisms
dc.subjectEpoxy polymerization
dc.subjectImpedance spectroscopy
dc.subjectOrganic/silica hybrids
dc.subjectProton conductivity
dc.subjectSol-gel
dc.titleProton conduction mechanisms in GPTMS/TEOS-derived organic/silica hybrid films prepared by sol-gel processen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes8408216349957378[5]
unesp.author.orcid0000-0001-7696-3004[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentFísica - IGCEpt

Arquivos