Publicação:
Quaternion-Based Backtracking Search Optimization Algorithm

Nenhuma Miniatura disponível

Data

2019-06-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso restrito

Resumo

Fitness landscape has been one of the main limitations regarding optimization tasks. Although meta-heuristic techniques have achieved outstanding results over a large variety of problems, some issues related to the function geometry and the risk to get trapped from local optima are issues that still require attention. To deal with this problem, we propose the Quaternion-based Backtracking Search Optimization Algorithm, a variant of the standard Backtracking Search Optimization Algorithm that maps each decision variable in a tensor onto a hypercomplex search space, whose landscape is expected to be smoother. Experiments conducted using nine benchmarking functions showed considerably better results than the ones achieved over standard search spaces, as well as more accurate results than some quaternion-based methods as well.

Descrição

Idioma

Inglês

Como citar

2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings, p. 3014-3021.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação