Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Self-Supervised Regression for Query Performance Prediction on Image Retrieval

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Content-Based Image Retrieval (CBIR) systems are currently a widely used solution for image retrieval tasks with various applications. Despite the advances achieved, one of the central issues is the need for methods capable of handling the scarcity or absence of labeled data. In this scenario, Query Performance Prediction (QPP) approaches represent a successful technique in the effectiveness estimation of retrieval results. In this work, we propose a novel self-supervised framework, named Regression for Query Performance Prediction Framework - RQPPF, which is flexible and can be used with different regression models. Among the contributions, our training relies only on synthetic data and rank-based features. An experimental evaluation was conducted on 4 different retrieval datasets, considering 14 visual features and 11 regression models. The results indicate highly effective predictions and most of them are greater than recent baselines.

Descrição

Palavras-chave

Content-based Image Retrieval, Query Performance Prediction, Self-Supervised Learning

Idioma

Inglês

Citação

Proceedings - 2023 IEEE 6th International Conference on Artificial Intelligence and Knowledge Engineering, AIKE 2023, p. 95-98.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso