Publicação:
Mapping Mosaic Virus in Sugarcane Based on Hyperspectral Images

dc.contributor.authorMoriya, Erika Akemi Saito [UNESP]
dc.contributor.authorImai, Nilton Nobuhiro [UNESP]
dc.contributor.authorTommaselli, Antonio Maria Garcia [UNESP]
dc.contributor.authorMiyoshi, Gabriela Takahashi [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:20:51Z
dc.date.available2018-11-26T17:20:51Z
dc.date.issued2017-02-01
dc.description.abstractThe aim of this research was to develop a methodology involving aerial surveying using an unmanned aerial system (UAS), processing and analysis of images obtained by a hyperspectral camera, achieving results that enable discrimination and recognition of sugarcane plants infected with mosaic virus. It was necessary to characterize the spectral response of healthy and infected sugarcane plants in order to define the correct mode of operation for the hyperspectral camera, which provides many spectral band options for imaging but limits each image to 25 spectral bands. Spectral measurements of the leaves of infected and healthy sugarcane with a spectroradiometer were used to produce a spectral library. Once the most appropriate spectral bands had been selected, it was possible to configure the camera and carry out aerial surveying. The empirical line approach was adopted to obtain hemispherical conical reflectance factor values with a radiometric block adjustment to produce a mosaic suitable for the analysis. A classification based on spectral information divergence was applied and the results were evaluated by Kappa statistics. Areas of sugarcane infected with mosaic were identified from these hyperspectral images acquired by UAS and the results obtained had a high degree of accuracy.en
dc.description.affiliationSao Paulo State Univ, Sch Sci & Technol, BR-19060900 Presidente Prudente, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Cartog, Sch Sci & Technol, BR-19060900 Presidente Prudente, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Sch Sci & Technol, BR-19060900 Presidente Prudente, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Cartog, Sch Sci & Technol, BR-19060900 Presidente Prudente, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/50426-4
dc.format.extent740-748
dc.identifierhttp://dx.doi.org/10.1109/JSTARS.2016.2635482
dc.identifier.citationIeee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 2, p. 740-748, 2017.
dc.identifier.doi10.1109/JSTARS.2016.2635482
dc.identifier.fileWOS000395466700030.pdf
dc.identifier.issn1939-1404
dc.identifier.lattes0000-0003-0516-0567
dc.identifier.lattes2985771102505330
dc.identifier.urihttp://hdl.handle.net/11449/162537
dc.identifier.wosWOS:000395466700030
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing
dc.relation.ispartofsjr1,547
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectPhytosanitation
dc.subjectprecision agriculture
dc.subjectunmanned aerial system (UAS)
dc.titleMapping Mosaic Virus in Sugarcane Based on Hyperspectral Imagesen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.author.lattes5493428631948910[3]
unesp.author.lattes2985771102505330[2]
unesp.author.orcid0000-0002-8571-1383[4]
unesp.author.orcid0000-0003-0483-1103[3]
unesp.author.orcid0000-0003-0516-0567[2]
unesp.departmentCartografia - FCTpt
unesp.departmentEstatística - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000395466700030.pdf
Tamanho:
1.1 MB
Formato:
Adobe Portable Document Format
Descrição: