Logotipo do repositório
 

Publicação:
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Oxford Univ Press

Tipo

Artigo

Direito de acesso

Resumo

Artificial neural networks (ANNs) have been successfully used in the last years to identify patterns in astronomical images. The use of ANN in the field of asteroid dynamics has been, however, so far somewhat limited. In this work, we used for the first time ANN for the purpose of automatically identifying the behaviour of asteroid orbits affected by the M1:2 mean-motion resonance with Mars. Our model was able to perform well above 85 per cent levels for identifying images of asteroid resonant arguments in term of standard metrics like accuracy, precision, and recall, allowing to identify the orbital type of all numbered asteroids in the region. Using supervised machine learning methods, optimized through the use of genetic algorithms, we also predicted the orbital status of all multi-opposition asteroids in the area. We confirm that the M1:2 resonance mainly affects the orbits of the Massalia, Nysa, and Vesta asteroid families.

Descrição

Palavras-chave

methods: data analysis, celestial mechanics, minor planets, asteroids: general

Idioma

Inglês

Como citar

Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 504, n. 1, p. 692-700, 2021.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação