Repository logo
 

Publication:
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars

dc.contributor.authorCarruba, V [UNESP]
dc.contributor.authorAljbaae, S.
dc.contributor.authorDomingos, R. C. [UNESP]
dc.contributor.authorBarletta, W. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionNatl Space Res Inst INPE
dc.date.accessioned2021-06-26T08:03:19Z
dc.date.available2021-06-26T08:03:19Z
dc.date.issued2021-06-01
dc.description.abstractArtificial neural networks (ANNs) have been successfully used in the last years to identify patterns in astronomical images. The use of ANN in the field of asteroid dynamics has been, however, so far somewhat limited. In this work, we used for the first time ANN for the purpose of automatically identifying the behaviour of asteroid orbits affected by the M1:2 mean-motion resonance with Mars. Our model was able to perform well above 85 per cent levels for identifying images of asteroid resonant arguments in term of standard metrics like accuracy, precision, and recall, allowing to identify the orbital type of all numbered asteroids in the region. Using supervised machine learning methods, optimized through the use of genetic algorithms, we also predicted the orbital status of all multi-opposition asteroids in the area. We confirm that the M1:2 resonance mainly affects the orbits of the Massalia, Nysa, and Vesta asteroid families.en
dc.description.affiliationSao Paulo State Univ UNESP, Sch Nat Sci & Engn, BR-12516410 Guaratingueta, SP, Brazil
dc.description.affiliationNatl Space Res Inst INPE, Div Space Mech & Control, CP 515, BR-12227310 Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationSao Paulo State Univ UNESP, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Sch Nat Sci & Engn, BR-12516410 Guaratingueta, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 301577/2017-0
dc.description.sponsorshipIdCAPES: 88887.374148/2019-00
dc.format.extent692-700
dc.identifierhttp://dx.doi.org/10.1093/mnras/stab914
dc.identifier.citationMonthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 504, n. 1, p. 692-700, 2021.
dc.identifier.doi10.1093/mnras/stab914
dc.identifier.issn0035-8711
dc.identifier.urihttp://hdl.handle.net/11449/210801
dc.identifier.wosWOS:000656137100048
dc.language.isoeng
dc.publisherOxford Univ Press
dc.relation.ispartofMonthly Notices Of The Royal Astronomical Society
dc.sourceWeb of Science
dc.subjectmethods: data analysis
dc.subjectcelestial mechanics
dc.subjectminor planets, asteroids: general
dc.titleArtificial neural network classification of asteroids in the M1:2 mean-motion resonance with Marsen
dc.typeArtigo
dcterms.licensehttp://www.oxfordjournals.org/access_purchase/self-archiving_policyb.html
dcterms.rightsHolderOxford Univ Press
dspace.entity.typePublication
unesp.departmentMatemática - FEGpt

Files