Publicação:
Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion

dc.contributor.authorToledo, Douglas
dc.contributor.authorUmetsu, Cristiane Akemi [UNESP]
dc.contributor.authorCamargo, Antonio Fernando Monteiro [UNESP]
dc.contributor.authorde Lara, Idemauro Antonio Rodrigues
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:39:24Z
dc.date.available2022-04-29T08:39:24Z
dc.date.issued2022-01-01
dc.description.abstractCount data as response variables are commonly modeled using Poisson regression models, which require equidispersion, i.e., equal mean and variance. However, this relationship does not always occur, and the variance may be higher or lower than the mean, phenomena are known as overdispersion and underdispersion, respectively. Non-equidispersion, when disregarded, can lead to a number of misinterpretations and inadequate predictions. Here, we compare the use of the COM-Poisson, double Poisson, Gamma-count, and restricted generalized Poisson models as a more flexible class for count problems associated with over- and underdispersion, since they have an additional parameter that allows more flexible analysis. The proposed method is useful in different applications, but here we provide an example using an underdispersed dataset concerning ecological invasion. For validation of the models, we use half-normal plots. The COM-Poisson, double Poisson, and Gamma-count performed best and properly modeled the underdispersion. The use of correct statistical models is recommended to handle this data property using objective criteria to ensure accurate statistical inferences.en
dc.description.affiliationPrograma de Pós-Graduação em Estatística e Experimentação Agronômica Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo, SP
dc.description.affiliationPrograma de Pós-Graduação em Aquicultura Universidade Estadual Paulista, SP
dc.description.affiliationDepartamento de Ecologia Universidade Estadual Paulista, SP
dc.description.affiliationDepartamento de Estatística Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo, SP
dc.description.affiliationUnespPrograma de Pós-Graduação em Aquicultura Universidade Estadual Paulista, SP
dc.description.affiliationUnespDepartamento de Ecologia Universidade Estadual Paulista, SP
dc.identifierhttp://dx.doi.org/10.1007/s10182-021-00432-6
dc.identifier.citationAStA Advances in Statistical Analysis.
dc.identifier.doi10.1007/s10182-021-00432-6
dc.identifier.issn1863-818X
dc.identifier.issn1863-8171
dc.identifier.scopus2-s2.0-85124096674
dc.identifier.urihttp://hdl.handle.net/11449/230344
dc.language.isoeng
dc.relation.ispartofAStA Advances in Statistical Analysis
dc.sourceScopus
dc.subjectAquatic macrophyte
dc.subjectEcological data
dc.subjectMaximum likelihood
dc.subjectOverdispersion
dc.subjectProbability distribution
dc.subjectResidual analysis
dc.titleFlexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersionen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-1885-638X[1]

Arquivos