Tabular data augmentation for video-based detection of hypomimia in Parkinson's disease
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
Background and Objective: This paper presents a method for the computerized detection of hypomimia in people with Parkinson's disease (PD). It overcomes the difficulty of the small and unbalanced size of available datasets. Methods: A public dataset consisting of features of the video recordings of people with PD with four facial expressions was used. Synthetic data was generated using a Conditional Generative Adversarial Network (CGAN) for training augmentation. After training the model, Test-Time Augmentation was performed. The classification was conducted using the original test set to prevent bias in the results. Results: The employment of CGAN followed by Test-Time Augmentation led to an accuracy of classification of the videos of 83%, specificity of 82%, and sensitivity of 85% in the test set that the prevalence of PD was around 7% and where real data was used for testing. This is a significant improvement compared with other similar studies. The results show that while the technique was able to detect people with PD, there were a number of false positives. Hence this is suitable for applications such as population screening or assisting clinicians, but at this stage is not suitable for diagnosis. Conclusions: This work has the potential for assisting neurologists to perform online diagnose and monitoring their patients. However, it is essential to test this for different ethnicity and to test its repeatability.
Descrição
Palavras-chave
CGAN, Data Augmentation, Facial expression, Hypomimia, Parkinson's disease
Idioma
Inglês
Citação
Computer Methods and Programs in Biomedicine, v. 240.


