Logotipo do repositório
 

Publicação:
Piecewise Linear Systems with Closed Sliding Poly-Trajectories

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Belgian Mathematical Soc Triomphe

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

In this paper we study piecewise linear (PWL) vector fields F(x,y) = { F-+(x,F-y) where x= (x,y) is an element of R-2, F+ (x) = A-Fx b(+) and F- (x) = +, A+ = (at) and A = (a7) are (2 x 2) constant matrices, b+ = (biF,11) E R2 1.1 and b- = (111-, b2-) E IR2 are constant vectors in R2. We suppose that the equilibrium points are saddle or focus in each half-plane. We establish a correspondence between the PWL vector fields and vectors formed by some of the following parameters: sets on E (crossing, sliding or escaping), kind of equilibrium (real or virtual), intersection of manifolds with E, stability and orientation of the focus. Such vectors are called configurations. We reduce the number of configurations by an equivalent relation. Besides, we analyze for which configurations the corresponding PWL vector fields can have or not closed sliding poly-trajectories.

Descrição

Palavras-chave

Piecewise linear systems, vector fields, poly-trajectories

Idioma

Inglês

Como citar

Bulletin Of The Belgian Mathematical Society-simon Stevin. Brussels: Belgian Mathematical Soc Triomphe, v. 21, n. 4, p. 653-684, 2014.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação