Publicação: Piecewise Linear Systems with Closed Sliding Poly-Trajectories
dc.contributor.author | Moraes, Jaime R. de [UNESP] | |
dc.contributor.author | Silva, Paulo R. da [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2015-03-18T15:56:46Z | |
dc.date.available | 2015-03-18T15:56:46Z | |
dc.date.issued | 2014-10-01 | |
dc.description.abstract | In this paper we study piecewise linear (PWL) vector fields F(x,y) = { F-+(x,F-y) where x= (x,y) is an element of R-2, F+ (x) = A-Fx b(+) and F- (x) = +, A+ = (at) and A = (a7) are (2 x 2) constant matrices, b+ = (biF,11) E R2 1.1 and b- = (111-, b2-) E IR2 are constant vectors in R2. We suppose that the equilibrium points are saddle or focus in each half-plane. We establish a correspondence between the PWL vector fields and vectors formed by some of the following parameters: sets on E (crossing, sliding or escaping), kind of equilibrium (real or virtual), intersection of manifolds with E, stability and orientation of the focus. Such vectors are called configurations. We reduce the number of configurations by an equivalent relation. Besides, we analyze for which configurations the corresponding PWL vector fields can have or not closed sliding poly-trajectories. | en |
dc.description.affiliation | UNESP, IBILCE, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.affiliationUnesp | UNESP, IBILCE, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 10/17956-1 | |
dc.format.extent | 653-684 | |
dc.identifier | http://projecteuclid.org/euclid.bbms/1414091008 | |
dc.identifier.citation | Bulletin Of The Belgian Mathematical Society-simon Stevin. Brussels: Belgian Mathematical Soc Triomphe, v. 21, n. 4, p. 653-684, 2014. | |
dc.identifier.issn | 1370-1444 | |
dc.identifier.uri | http://hdl.handle.net/11449/117687 | |
dc.identifier.wos | WOS:000345951800005 | |
dc.language.iso | eng | |
dc.publisher | Belgian Mathematical Soc Triomphe | |
dc.relation.ispartof | Bulletin Of The Belgian Mathematical Society-simon Stevin | |
dc.relation.ispartofjcr | 0.423 | |
dc.relation.ispartofsjr | 0,527 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Piecewise linear systems | en |
dc.subject | vector fields | en |
dc.subject | poly-trajectories | en |
dc.title | Piecewise Linear Systems with Closed Sliding Poly-Trajectories | en |
dc.type | Artigo | |
dcterms.rightsHolder | Belgian Mathematical Soc Triomphe | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |