Logotipo do repositório
 

Publicação:
Parallel fuzzy minimals on GPU

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Clustering is a classification method that organizes objects into groups based on their similarity. Data clustering can extract valuable information, such as human behavior, trends, and so on, from large datasets by using either hard or fuzzy approaches. However, this is a time-consuming problem due to the increasing volumes of data collected. In this context, sequential executions are not feasible and their parallelization is mandatory to complete the process in an acceptable time. Parallelization requires redesigning algorithms to take advantage of massively parallel platforms. In this paper we propose a novel parallel implementation of the fuzzy minimals algorithm on graphics processing unit as a high-performance low-cost solution for common clustering issues. The performance of this implementation is compared with an equivalent algorithm based on the message passing interface. Numerical simulations show that the proposed solution on graphics processing unit can achieve high performances with regards to the cost-accuracy ratio.

Descrição

Palavras-chave

Fuzzy clustering, Fuzzy minimals algorithm, GPU, MPI, Parallel computing

Idioma

Inglês

Como citar

Applied Sciences (Switzerland), v. 12, n. 5, 2022.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação