Repository logo
 

Publication:
A rank aggregation framework for video multimodal geocoding

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Article

Access right

Acesso restrito

Abstract

This paper proposes a rank aggregation framework for video multimodal geocoding. Textual and visual descriptions associated with videos are used to define ranked lists. These ranked lists are later combined, and the resulting ranked list is used to define appropriate locations for videos. An architecture that implements the proposed framework is designed. In this architecture, there are specific modules for each modality (e.g, textual and visual) that can be developed and evolved independently. Another component is a data fusion module responsible for combining seamlessly the ranked lists defined for each modality. We have validated the proposed framework in the context of the MediaEval 2012 Placing Task, whose objective is to automatically assign geographical coordinates to videos. Obtained results show how our multimodal approach improves the geocoding results when compared to methods that rely on a single modality (either textual or visual descriptors). We also show that the proposed multimodal approach yields comparable results to the best submissions to the Placing Task in 2012 using no extra information besides the available development/training data. Another contribution of this work is related to the proposal of a new effectiveness evaluation measure. The proposed measure is based on distance scores that summarize how effective a designed/tested approach is, considering its overall result for a test dataset. © 2013 Springer Science+Business Media New York.

Description

Keywords

Effectiveness measure, Multimodal retrieval, Rank aggregation, Video geotagging

Language

English

Citation

Multimedia Tools and Applications, p. 1-37.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs