Logotipo do repositório
 

Publicação:
Effect of microwave crystallization on the wear resistance of reinforced glass-ceramics

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This study compared the wear resistance of different reinforced glass-ceramics crystalized by conventional or microwave firing. The wear rate of three ceramics [one lithium disilicate ceramic (LD): IPS e.max CAD – Ivoclar Vivadent; and two zirconia reinforced lithium silicates: Suprinity – VITA Zahnfabrik (ZLS1) and Celtra Duo – Dentsply (ZLS2)] crystallized by conventional (c) or microwave (mw) firing protocols were collected according to the contact- [two-body (n = 20/gr)] and contact-free wear tests [three-body (n = 20/gr)]. After wear tests performed on ACTA wear machine, mean surface roughness (Ra) and Scanning Electron Microscopy (SEM) analyzes were performed to evaluate the surface alterations. The wear and roughness data (in μm) were evaluated using two-way ANOVA and Tukey post-hoc test (α = 0.05). Two-body wear test revealed that ZLS1 (1.30 ± 1.79)A showed higher wear rate than LD (0.79 ± 2.15)B and ZLS2 (0.85 ± 0.94)B, regardless the crystallization approach. For three-body test, conventional crystallization (0.62 ± 0.4)A showed higher wear rates than microwave (0.22 ± 0.71)B; while the type of ceramic was not significant. The crystallization protocol (p < 0.001) and ceramic material (p = 0.001) affected the surface roughness in the three-body; whereas the two-body test, only the crystallization protocol (p = 0.046). SEM analysis showed a similar and smother surface morphology for LD and ZLS2 compared to ZLS1. Conventional crystallization showed materials more prone to wear than the microwave, in the presence of food bolus. Therefore, the microwave crystallization can be suggested as an alternative to improve the evaluated glass-ceramics wear resistance.

Descrição

Palavras-chave

ACTA wear machine, Dental ceramics, microwave processing

Idioma

Inglês

Como citar

Journal of the Mechanical Behavior of Biomedical Materials, v. 111.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação