Dual functionality of chitosan and CTAB doped SnSe nanostructures: RhB decolorization, oxygen evolution reaction and antimicrobial activity against S. aureus by inhibiting DNA gyrase through molecular docking
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
The current study explores the amalgamation of varying concentrations 2 and 4 wt% of chitosan (CS) and fixed concentration (3 wt%) of cetyltrimethylammonium bromide (CTAB) in tin selenide (SnSe) to form a novel ternary system of CS/CTAB-SnSe via co-precipitation method. The objective of this work is to minimize the minacious environmental concerns regarding organic pollutants and oxygen evolution reaction (OER) activity. This ternary system also used to examine the antibacterial action with familiar antibiotic ciprofloxacin (CIP) against a Gram-positive multiple drug resistant (MDR) bacteria Staphylococcus aureus (MDR S. aureus). The highest (80 %) decolorization efficiency of RhB was observed in an acidic medium at 8 min. For OER, optimized (4 wt% of CS doped into CTAB-SnSe) electrocatalyst revealed lower overpotential, minimal Tafel slope, and lowest Rct value, indicating higher OER activity. The optimized sample showed a maximum inhibitory zone value of 5.45 ± 0.04 mm against S. aureus. The docking investigations were undertaken to investigate the microbicidal prohibitive mechanism of CTAB-SnSe and CS/CTAB-SnSe on DNA gyrase enzymes in S. aureus. The experimental findings elucidated that CS augmented CTAB-SnSe exhibits significant active sites required for chromophore breakdown of RhB and inhibiting the growth of MDR S. aureus.
Descrição
Palavras-chave
Antibacterial activity, Nanostructures, SnSe
Idioma
Inglês
Citação
International Journal of Biological Macromolecules, v. 301.


