Logotipo do repositório
 

Publicação:
Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Institute of Electrical and Electronics Engineers (IEEE)

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

This paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy classification is performed using a fuzzy membership matrix and the Euclidean distance to the cluster centers. Then, the distance measures are normalized and ordered, yielding a unitary index score, where the potential fraudsters or users with irregular patterns of consumption have the highest scores. The approach was tested and validated on a real database, showing good performance in tasks of fraud and measurement defect detection.

Descrição

Palavras-chave

Data mining, electricity theft, fuzzy clustering, nontechnical losses

Idioma

Inglês

Como citar

IEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 26, n. 4, p. 2436-2442, 2011.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação